

 Department of Computer Science and Engineering

 (CS,AIML,DS,IOT)

Material

II B. Tech I Semester

Subject: Object Oriented Programming Through Java

 Code: A0510

Academic Year 2021-2022

Regulations: MR20

2020-21

Onwards

(MR-20)

MALLA REDDY ENGINEERING COLLEGE

(Autonomous)

B.Tech.

III Semester

Code: A0510 JAVA PROGRAMMING

 (Common for CSE and IT)

L T P

Credits: 3 3 - -

Prerequisites: Computer Programming

Course Objectives:

This course will make students able to learn and understand the concepts and features of object

oriented programming and the object oriented concept like inheritance and will know how to

make use of interfaces and package, to acquire the knowledge in Java’s exception handling

mechanism, multithreading, to explore concepts of Applets and event handling mechanism. This

course makes students to gain the knowledge in programming using Layout Manager and

swings.

MODULE I: OOP concepts & Introduction to C++, Java [09 Periods]

OOP concepts & Introduction to C++ - Introduction to object oriented concepts : Object, class,

methods, instance variables; C++ program structure; Standard Libraries; accessing class data

members; Overview of Inheritance, Overloading, Polymorphism, Abstraction, Encapsulation and

Interfaces.

Introduction to Java - History of JAVA, Java buzzwords, data types, variables, scope and life

time of variable, arrays, operators, expressions, control statements ,type conversion and type

casting, simple Java program.

MODULE II: Basics of JAVA [09 Periods]

Classes and Objects - Concepts of classes, Objects, constructors, methods, this key word ,

garbage collection overloading methods, constructors parameter passing ,recursion.String

handling: string, string buffer, string tokenizer.

Inheritance - Base class object, subclass, member access rules, super uses, using final with

inheritance, method overriding, abstract classes

MODULE III: Interfaces and Exception Handling [12 Periods]

A: Interfaces - Defining an interface, implementing interface, differences between classes and

interfaces, extending interfaces. Packages - Defining, creating and accessing a package,

importing packages, access control, exploring package-java.io.

B: Exception handling - Concepts of Exception handling, benefits of exception handling,

exception hierarchy, checked and unchecked exceptions, usage of try, catch , throw, throws and

finally, built-in exceptions, creating own exception subclasses.

MODULE IV: Multithreading and Collection Classes [09 Periods]

Multithreading - Differences between multithreading and multitasking, thread life cycle,

creating threads, synchronizing threads, daemon threads, thread groups.

Collection Classes –Array List, LinkedList, HashSet, LinkedHashSet, TreeSet, PriorityQueue,

ArrayDequeue, EnumSet.

MODULE V: Event handling, Layout manager and Swings [09Periods]

Event handling - Events, Event sources, event classes, event listeners, delegation event model,

handling mouse and keyboard events, adapter classes. Layout manager - border, grid, flow, card

and grid bag.Layout manager - Layout manager types-border, grid, flow, card, and grid bag.

Swings - Introduction, limitations of AWT, components, containers, exploring swing-JApplet,

JFrame and JComponent,Icons and Labels, TextFields, buttons – the JButton class, Checkboxes,

Radio buttons, Combo boxes, Tabbed Panes, ScrollPanes, Trees and Tables.

TEXTBOOKS

1. Herbert Schildt, “Java The complete reference”, TMH, 8th edition

2. T. Budd, “Understanding OOP with Java”, updated edition, Pearson Education.

3. Joyce Farrell, Cengage , “Object Oriented Programming C++”, 4th Edition ,2013

REFERENCES
1. P.J. Deitel and H.M. Deitel, “Java for Programmers”, Pearson education.

2. P. Radha Krishna, “Object Orientd Programming through Java”, Universities Press.

3. S. Malhotra and S. Choudhary, “Programming in Java”, Oxford Univ. Press.

4. Bruce Eckel, “Programming in Java”, Pearson Education.

5. Herbert Schildt , “The Complete Reference, C++”, TMH, 4th edition.

E-RESOURCES

1. http://ndl.iitkgp.ac.in/document/xttk-4kfhvUwVlXBW-WRPf64_TFk2i4LJhgQFPQWAEt-

Zobbm3twyubjRA1YOe9WVwkN2qGcxBwdHaPdi_mMQ

2. https://ndl.iitkgp.ac.in/result?q={"t":"search","k":"object%20oriented%20programming","s":

["type=\"video\""],"b":{"filters":[]}}

3. http://www.rehancodes.com/files/oop-using-c++-by-joyce-farrell.pdf

4. http://www.nptel.ac.in/courses/106103115/36

 Course Outcomes:

 At the end of the course, students will be able to

1. Differentiate structured programming and object-oriented programming and know the

concepts of classes, objects, members of a class.

2. Apply object-oriented programming features and concepts for solving given problems using

inheritance and will know how to organize files in packages and concept of interface.

3. Capable of handling run time errors using Exceptional Handling and develop applications

for concurrent processing using Thread Concept.

4. Design Applets that take user response through various peripheral devices such as mouse

and keyboard by event handling mechanism.

5. Design interactive applications for use on internet.

http://ndl.iitkgp.ac.in/document/xttk-4kfhvUwVlXBW-WRPf64_TFk2i4LJhgQFPQWAEt-Zobbm3twyubjRA1YOe9WVwkN2qGcxBwdHaPdi_mMQ
http://ndl.iitkgp.ac.in/document/xttk-4kfhvUwVlXBW-WRPf64_TFk2i4LJhgQFPQWAEt-Zobbm3twyubjRA1YOe9WVwkN2qGcxBwdHaPdi_mMQ
https://ndl.iitkgp.ac.in/result?q=%7b%22t%22:%22search%22,%22k%22:%22object%20oriented%20programming%22,%22s%22:%5b%22type=/%22video/%22%22%5d,%22b%22:%7b%22filters%22:%5b%5d%7d%7d
https://ndl.iitkgp.ac.in/result?q=%7b%22t%22:%22search%22,%22k%22:%22object%20oriented%20programming%22,%22s%22:%5b%22type=/%22video/%22%22%5d,%22b%22:%7b%22filters%22:%5b%5d%7d%7d
http://www.rehancodes.com/files/oop-using-c++-by-joyce-farrell.pdf
http://www.nptel.ac.in/courses/106103115/36

PEO’s Mapping with PO’s

Program Educational Objective
Program Outcomes(a-i)

a b c d e f g h i

PEO I ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

PEO II ✓ ✓ ✓ ✓ ✓ ✓

PEO III ✓ ✓ ✓ ✓

PEO IV ✓ ✓ ✓ ✓ ✓

Subject Mapping with PEO’s
The components of the curriculum and their relevance to the POs and the PEOs

 Programme curriculum grouping based on different components

Course

Component

Curriculum Content (%of number

of credits of the programme)

Total no of

contact hours

Total number

of credits
POs PEOs

Professional

core

II Year I Semester

Java Programming 48 3 a,b,c,f,g,h P1,P2

Subject Mapping with PO’s
Core engineering subjects and their relevance to Programme Outcomes including design

experience.

Contribution of courses

to program outcomes
Program Outcomes (a-i) Course outcomes

II YEAR I SEMSTER

Course No. & Title a b c d e f g h i

Java Programming

✓ ✓ ✓ ✓ ✓ ✓ ✓ Differentiate the structured

programming & object-oriented

programming, know the concepts of

classes, objects, members of a class.

Year/

Sem

Course

Name
Outcomes

Program

Outcomes

Highly Moderately

II/I
Java

Programming

Differentiate structured programming

and object oriented programming and

know the concepts of classes, objects,

members of a class.

a,b,c,d,e,f b,c d,e

Apply OOP features and concepts for

solving given problems using

inheritance and will know how to

organize files in packages & concept of

interface.

b,c,d,e B c,d,e

Capable of handling run time errors

using Exceptional Handling and

develop applications for concurrent

processing using Thread Concept.

a,c,d,f,g a,c,d f,g

Design Applets that take user response

through various peripheral devices by

event handling mechanism.

b,c,e b c,e

Design interactive applications for use

on internet.

b,c,d,e b,e c,d

Course Objectives and Course Outcomes

Course Objectives:

This course will make students able to learn and understand the concepts and features of object-

oriented programming and the object-oriented concept like inheritance and will know how to

make use of interfaces and package, to acquire the knowledge in Java’s exception handling

mechanism, multithreading, to explore concepts of Applets and event handling mechanism. This

course makes students to gain the knowledge in programming using Layout Manager and

swings.

 Course Outcomes:

 At the end of the course, students will be able to

1. Differentiate structured programming and object-oriented programming and know the

concepts of classes, objects, members of a class.

2. Apply object-oriented programming features and concepts for solving given problems using

inheritance and will know how to organize files in packages and concept of interface.

3. Capable of handling run time errors using Exceptional Handling and develop applications

for concurrent processing using Thread Concept.

4. Design Applets that take user response through various peripheral devices such as mouse

and keyboard by event handling mechanism.

5. Design interactive applications for use on internet.

Module-1 OOPS Through JAVA Page 1

Module-1

Syllabus:

OOP concepts & Introduction to C++: Introduction to object-oriented concepts: Object, class, methods,

Instance variables; C++ program structure; accessing class data members; Overview of Inheritance,

Overloading,Polymorphism, Abstraction, Encapsulation.

Introduction to Java – History of JAVA,Java buzzwords,Data types, variables,scope and life time of

variable,arrays, operators, expressions, control statements, type conversion and type casting, arrays, simple

Java program.

Module-1 OOPS Through JAVA Page 2

Introduction to object-oriented concepts

Class:

 A class is a template from which objects are created. That is objects are instance of a class.

 When you create a class, you are creating a new datatype. You can use this type to declare objects

of that type.

 Class defines structure and behavior (data & code) that will be shared by a set of objects.

Object:

 An object is a region of storage that defines both state&behavior.

 State is represented by a set of variables & the values they contain.

 Behavior is represented by a set of methods & the logic they implement.

 Thus, an object is a combination of a data & the code that acts upon it.

 Objects are instance of a class.

 Objects are the basic runtime entities in an object-oriented system.

For Example:

Person Ram, Ravi;

Ram = new person();

Ravi = new person();

Method:

 A method is a block of code or collection of statements or a set of code grouped together to

perform a certain task or operation. It is used to achieve the reusability of code. We write a

method once and use it many times.

 It is similar to a function in any other programming language.

Why Use Methods?

1. To Make the Code Reusable

2. To Simplify the Code.

3. For Top-down Programming

Method Type:

• There are two types of methods in Java: instance methods and class methods.

• Instance methods are used to access/manipulate the instance variables but can also access class

variables.

• Class methods can access/manipulate class variables but cannot access the instance variables

unless and until they use an object for that purpose.

Method Declaration:

• The name and parameter list for each method in a class must be unique.

• The uniqueness of a parameter is decided based on the number of parameters as well as the order

of the parameters.

• Let us take a look at the general syntax of a method declaration:

 [modifiers] return_type method_name (parameter_list) [throws_clause] {

 [statement_list]

 }

• The parameters enclosed within square brackets [] are optional. The method declaration includes

Module-1 OOPS Through JAVA Page 3

modifiers.

• We have the following list of modifiers. They are public, private, protected, or default, static,

abstract, final, native, synchronized etc.

• Return Type It can be either void (if no value is returned) or if a value is returned, it can be either

a primitive type or a class. If the method declares a return type, then before it exits, it must have

a return statement.

• Method Name The method name must be a valid Java identifier.

• Parameter List Zero or more type/identifier pairs make up a parameter list. Each parameter in the

parameter list is separated by a comma.

Curly Braces The method body is contained in a set of curly braces. Methods contain a sequence

of statements that are executed sequentially. The method body can also be empty.

What is instance variable in Java?
Instance variables in Java are non-static variables which are defined in a class outside any

method, constructor or a block. Each instantiated object of the class has a separate copy or instance of

that variable. An instance variable belongs to a class.

When you create a new object of the class you create an instance. Consider, if you have a STUDENT

class, then

class Student

{

String studentName;

int studentScore;

}

Features of an instance variable?
The life of an instance variable depends on the life of an Object, i.e., when the object is created, an

instance variable also gets created and the same happens when an object is destroyed.

 Instance Variable can be used only by creating objects

 Every object will have its own copy of Instance variables
 Initialization of instance variable is not compulsory. The default value is zero

 The declaration is done in a class outside any method, constructor or block

 Instance variables are used when the variable has to be known to different methods in a class

 Access modifiers can be assigned to instance variables

Structure of a C++ program

A C++ program is structured in a specific and particular manner. In C++, a program is divided into the

following three sections:

1. Standard Libraries Section

2. Main Function Section

3. Function Body Section

Example:

#include <iostream>

using namespace std;

https://www.edureka.co/blog/constructor-in-java/
https://www.edureka.co/blog/java-tutorial/#obj
https://www.edureka.co/blog/constructor-in-java/
https://www.edureka.co/blog/access-modifiers-in-java/

Module-1 OOPS Through JAVA Page 4

int main() {

 cout << "Hello World!" << endl;

 return 0;

}

Output:

Hello World!

Standard library section:

 #include is a specific preprocessor command that effectively copies and pastes the entire text of

the file, specified between the angle brackets, into the source code.

 The file <iostream>, which is a standard file that should come with the C++ compiler, is short

for input-output streams. This command contains code for displaying and getting an input from

the user.

 namespace is a prefix that is applied to all the names in a certain set. iostream file defines

two names used in this program - cout and endl.

 This code is saying: Use the cout and endl tools from the std toolbox.

Main function section:

 The starting point of all C++ programs is the main function.

 This function is called by the operating system when your program is executed by the computer.

 { signifies the start of a block of code, and } signifies the end.

Function body section:

 The name cout is short for character output and displays whatever is between the << brackets.

 Symbols such as << can also behave like functions and are used with the keyword cout.

 The return keyword tells the program to return a value to the function int main

 After the return statement, execution control returns to the operating system component that

launched this program.

 Execution of the code terminates here.

To access the members of a class

1. First of all, import the class.

2. Create an object of that class.

3. Using this object access, the members of that class.

Module-1 OOPS Through JAVA Page 5

OOP Principles

All object-oriented programming languages provide mechanism that help you implement the object-

oriented model. They are:

1. Encapsulation

2. Abstraction

3. Inheritance

4. Polymorphism

Encapsulation:

 Encapsulation is the mechanism that binds code and data together and keeps both safe from

outside interference and misuse.

 In Java, the basis of encapsulation is the class.

 When we create a class, we will specify the code and data that constitute that class. Collectively,

these elements are called members of the class.

 The data defined by the class are referred to as member variables or instance variables.

 The code that operates on that data is referred to as member methods or just method.

 Each method or variable in a class may be marked private or public.

 The public interface of a class represents everything that external users of the class need to know

or may know.

 The private methods and data can only be accessed by code that is a member of the class.

Therefore, any other code that is not a member of the class cannot access a private method or

variable.

Abstraction:

• Elephant, CD player, Television, Chair, Table , Tiger from these objects we can specify we have

3 classes. They are animals, furniture and electronic items.

• We got this solution because we grouped the generic characteristics rather than specific

characteristics. This is called abstraction.

• Another well-known analogy for abstraction is a car. We drive cars without knowing the internal

details about how the engine works and how the car stops on applying brakes.

• We are happy with the abstraction provided to us, e.g., brakes, steering, etc. and we interact with

them.

Inheritance:

• The concept of Inheritance provides the idea of reusability.

• This means that we can add additional features to an existing class without modifying it. This is

possible by deriving new class form the existing one.

• The new class have the combined feature of both the classes.

• Each subclass defines only those features that are unique to it.

• Derived class is known as ‘sub class’ and main class is known as ‘super class’.

Polymorphism:

 Polymorphism means the ability to take more than one form.

 A single function name can be used to handle different no and different types of argument.

 It plays an important role in allowing objects having different internal structures to share the

same external interface.

Module-1 OOPS Through JAVA Page 6

History of Java

The history of Java is very interesting. Java was originally designed for interactive television, but

it was too advanced technology for the digital cable television industry at the time. The history of Java

starts with the Green Team. Java team members (also known as Green Team), initiated this project to

develop a language for digital devices such as set-top boxes, televisions, etc. However, it was best suited

for internet programming. Later, Java technology was incorporated by Netscape.

The principles for creating Java programming were "Simple, Robust, Portable, Platform-independent,

Secured, High Performance, Multithreaded, Architecture Neutral, Object-Oriented, Interpreted, and

Dynamic". Java was developed by James Gosling, who is known as the father of Java, in 1995. James

Gosling and his team members started the project in the early '90s.

Currently, Java is used in internet programming, mobile devices, games, e-business solutions, etc. Following are

given significant points that describe the history of Java.

1) James Gosling, Mike Sheridan, and Patrick Naughton initiated the Java language project in June

1991. The small team of sun engineers called Green Team.

2) Initially it was designed for small, embedded systems in electronic appliances like set-top boxes.

3) Firstly, it was called "Greentalk" by James Gosling, and the file extension was .gt.

4) After that, it was called Oak and was developed as a part of the Green project.

Why Java was named as "Oak"?

5) Why Oak? Oak is a symbol of strength and chosen as a national tree of many countries like the

U.S.A., France, Germany, Romania, etc.

6) In 1995, Oak was renamed as "Java" because it was already a trademark by Oak Technologies.

Why Java Programming named "Java"?

7) Why had they chose the name Java for Java language? The team gathered to choose a new name. The

suggested words were "dynamic", "revolutionary", "Silk", "jolt", "DNA", etc. They wanted something

that reflected the essence of the technology: revolutionary, dynamic, lively, cool, unique, and easy to

spell, and fun to say.

According to James Gosling, "Java was one of the top choices along with Silk". Since Java was so

unique, most of the team members preferred Java than other names.

8) Java is an island in Indonesia where the first coffee was produced (called Java coffee). It is a kind of

espresso bean. Java name was chosen by James Gosling while having a cup of coffee nearby his office.

9) Notice that Java is just a name, not an acronym.

10) Initially developed by James Gosling at Sun Microsystems (which is now a subsidiary of Oracle

Corporation) and released in 1995.

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/james-gosling-father-of-java
https://www.javatpoint.com/embedded-system-tutorial
https://www.javatpoint.com/sun-microsystems

Module-1 OOPS Through JAVA Page 7

11) In 1995, Time magazine called Java one of the Ten Best Products of 1995.

12) JDK 1.0 was released on January 23, 1996. After the first release of Java, there have been many

additional features added to the language. Now Java is being used in Windows applications, Web

applications, enterprise applications, mobile applications, cards, etc. Each new version adds new

features in Java.

Java Version History

Many java versions have been released till now. The current stable release of Java is Java SE 10.

1. JDK Alpha and Beta (1995)

2. JDK 1.0 (23rd Jan 1996)

3. JDK 1.1 (19th Feb 1997)

4. J2SE 1.2 (8th Dec 1998)

5. J2SE 1.3 (8th May 2000)

6. J2SE 1.4 (6th Feb 2002)

7. J2SE 5.0 (30th Sep 2004)

8. Java SE 6 (11th Dec 2006)

9. Java SE 7 (28th July 2011)

10. Java SE 8 (18th Mar 2014)

11. Java SE 9 (21st Sep 2017)

12. Java SE 10 (20th Mar 2018)

13. Java SE 11 (September 2018)

14. Java SE 12 (March 2019)

15. Java SE 13 (September 2019)

16. Java SE 14 (Mar 2020)

17. Java SE 15 (September 2020)

18. Java SE 16 (Mar 2021)

19. Java SE 17 (September 2021)

20. Java SE 18 (to be released by March 2022

Module-1 OOPS Through JAVA Page 8

Java Buzzwords (or)Features of Java

The Java programming language is a high-level language that can be characterized by all of the following
buzzwords:

1. Simple

2. Object-oriented

3. Distributed

4. Interpreted

5. Robust

6. Secure

7. Architecture neutral

8. Portable

9. High performance

10. Multithreaded

11. Dynamic

1. Simple

 Java was designed to be easy for a professional programmer to learn and use effectively.

 It’s simple and easy to learn if you already know the basic concepts of Object Oriented Programming.

 Best of all, if you are an experienced C++ programmer, moving to Java will require very little effort.

Because Java inherits the C/C++ syntax and many of the object-oriented features of C++, most

programmers have little trouble learning Java.

 Java has removed many complicated and rarely-used features, for example, explicit pointers, operator

overloading, etc.

2. Object Oriented

 Java is true object-oriented language.

 Almost “Everything is an Object” paradigm. All program code and data reside within objects and classes.

 The object model in Java is simple and easy to extend.

 Java comes with an extensive set of classes, arranged in packages that can be used in our programs

through inheritance.

 Object-oriented programming (OOPs) is a methodology that simplifies software development and

maintenance by providing some rules.

Basic concepts of OOPs are:

 Object

 Class

 Inheritance

 Polymorphism

 Abstraction

 Encapsulation

Module-1 OOPS Through JAVA Page 9

3. Distributed

 Java is designed fa or distributed environment of the Internet. Its used for creating applications on

networks.

 Java applications can access remote objects on the Internet as easily as they can do in the local system.

 Java enables multiple programmers at multiple remote locations to collaborate and work together on a

single project.

 Java is designed for the distributed environment of the Internet because it handles TCP/IP protocols.

4. Compiled and Interpreted

 Usually, a computer language is either compiled or Interpreted. Java combines both this approach and
makes it a two-stage system.

 Compiled: Java enables the creation of cross-platform programs by compiling into an intermediate

representation called Java Bytecode.

 Interpreted: Bytecode is then interpreted, which generates machine code that can be directly executed by

the machine that provides a Java Virtual machine.

5. Robust

 It provides many features that make the program execute reliably in a variety of environments.

 Java is a strictly typed language. It checks code both at compile time and runtime.

 Java takes care of all memory management problems with garbage collection.

 Java, with the help of an exception handling, captures all types of serious errors and eliminates any risk of

crashing the system.

6. Secure

 Java provides a “firewall” between a networked application and your computer.

 When a Java Compatible Web browser is used, downloading can be done safely without fear of viral
infection or malicious intent.

 Java achieves this protection by confining a Java program to the Java execution environment and not

allowing it to access other parts of the computer.

7. Architecture Neutral

 Java language and Java Virtual Machine helped in achieving the goal of “write once; run anywhere, any

time, forever.”

 Changes and upgrades in operating systems, processors and system resources will not force any changes

in Java Programs.

8. Portable

 Java Provides a way to download programs dynamically to all the various types of platforms connected to

the Internet.

 It helps in generating Portable executable code.

Module-1 OOPS Through JAVA Page 10

9. High Performance

 Java performance is high because of the use of bytecode.

 The bytecode was used so that it was easily translated into native machine code.

10. Multithreaded

 Multithreaded Programs handled multiple tasks simultaneously, which was helpful in creating interactive,

networked programs.

 Java run-time system comes with tools that support multiprocess synchronization used to construct

smoothly interactive systems.

11. Dynamic

 Java is capable of linking in new class libraries, methods, and objects.

 Java programs carry with them substantial amounts of run-time type information that is used to verify and

resolve accesses to objects at runtime. This makes it possible to dynamically link code in a safe and

expedient manner.

Data Types

■ The type defines set of values and set of operations can be performed on those data.

■ All variables in Java must be declared before they can be used, due to this Java is termed as a

strongly typed language.

■ There are eight primitive data types in Java, as follows:

■ Byte, short, int , long, float, double, char and Boolean.

These can be put in four groups:

■ Integers: This group includes byte, short, int, and long, which are for whole valued

signednumbers.

■ Floating-point numbers: This group includes float and double, which represent numbers

with fractionalprecision.

■ Characters: This group includes char, which represents symbols in a character set, like

letters and numbers.

■ Boolean: This group includes boolean, which is a special type for representing true/falsevalues.

Module-1 OOPS Through JAVA Page 11

In C and C++ allow the size of an integer to vary based upon the execution environment. Because

of Java’s portability requirement, all data types have a strictly defined range. For example, an int is

always 32 bits, regardless of the particular platform

a. Integers:

Java defines four integer types: byte, short, int, and long. All of these are signed, positive and

negative values. Bytes and shorts are 32-bit values to improve performance, The width and

ranges of these integer types vary widely, as shown in this table:

Name width Range

Long 64 –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

Int 32 –2,147,483,648 to 2,147,483,647

byte 8 –128 to 127

short 16 –32,768 to 32,767

Byte:

The smallest integer type is byte. This is a signed 8-bit type that has a range from –128 to 127.

Variables of type byte are useful when working with a stream of data from a network or file Byte

variables are declared by use of the byte keyword.

Example: byte b, c;

short

short is a signed 16-bit type. It has a range from –32,768 to 32,767. It is probably the least-used Java

type, since it is defined as having its high byte first (called big-endian format).

Example: short s;

short t;

int

The most commonly used integer type is int. It is a signed 32-bit type that has a range from –

2,147,483,648 to 2,147,483,647. Variables of type int are commonly employed to control loops and

to index arrays. The int type is the most versatile and efficienttype.

Long:

long is a signed 64-bit type and is useful for those occasions where an int type is not large

enough to hold the desired value. The range of a long is quite large.

b. Floating-PointTypes

Floating-point numbers, also known as real numbers, are used when evaluating expressions

that require fractional precision. For example: square root of a value. There are two kinds of

floating-point types, float and double, which represent single- and double-precision numbers,

respectively.

Name Width Range

Double 64 4.9e–324 to 1.8e+308

Float 32 1.4e−045 to 3.4e+038

Module-1 OOPS Through JAVA Page 12

float

The type float specifies a single-precision value that uses 32 bits of storage. Variables of type float

are useful when you need a fractional component, but don’t require a large degree of precision.

Example: float hightemp, lowtemp;

double

Double precision, as denoted by the double keyword, uses 64 bits to store a value. All

transcendental math functions, such as sin(), cos(), and sqrt(), return double values. When you

need to maintain accuracy over many iterative calculations double is the bestchoice.

Example: A java program to find area of

a circle class Area{

public static void main(String

args[]) { double pi, r, a;

r = 10.8;

pi = 3.1416;

a = pi * r *r;

System.out.println("Area of circle is " + a);

}

}

c. character types

In Java, the data type used to store characters is char. In C/C++, char is an integer type that is 8

bits wide. Instead, Java uses Unicode to represent characters. In Java char is a 16-bit type. The

range of a char is 0 to 65,536. There are no negative chars.

Example:

class CharDemo{

public static void main(String

args[]){ char ch1, ch2;

ch1 = 88; //

code for X ch2

= 'Y';

System.out.print("ch1 and ch2: ");

System.out.println(ch1 + " " +ch2);

}

}

This program displays the output: ch1 and ch2: XY

d. Booleans

Java has a simple type, called boolean, for logical values. It can have only one of two possible values,

trueor false. This is the type returned by all relational operators, such as a < b.

Example:

Module-1 OOPS Through JAVA Page 13

Boolean result= true;

// Demonstrate

boolean values. class

BoolTest {

public static voidmain(Stringargs[]) {

booleanb;

b = false; System.out.println("b is " + b); b =true;

System.out.println("b is " + b);

// a boolean value can control the if statement if(b)

System.out.println("This is executed."); b = false;

if(b)

System.out.println("This is not executed.");

// outcome of a relational operator is a boolean value System.out.println("10 > 9 is "

+ (10 > 9));

}

}

The output generated by this program is

shown here: b is false

b is true

This is

executed

.

10 > 9 is

true

Variable

• The variable is the basic unit of storage in a Java program.

• A variable is defined by the combination of an identifier, a type, and an optional initializer.

Declaring a Variable :

■ A variable must be declared before it is used. The basic form of a variable declaration is:

 type identifier [= value][, identifier [= value] ...] ;

■ The type is one of the types(int, float, char, etc) or name of the class, interface, etc.,

■ The identifier is the name of the variable.

■ The variable can be initialized by specifying an equal sign and a value.

■ Keep in mind that the initialization expression must result in a value of the same type as that

specified for the variable

Example:

int a, b, c;

int d = 3, e, f = 5; // declares three more ints, initializing

byte z = 22; // initializes z.

double pi = 3.14159; // declares an approximation of pi.

char x = 'x'; // the variable x has the value 'x'.

Module-1 OOPS Through JAVA Page 14

Types of Variables and its Scope:
There are three types of variables.

1. Instance Variables

2. Class Variables

3. Local Variables

Now, let us dig into the scope and lifetime of each of the above mentioned type.

1.Instance Variables

A variable which is declared inside a class, but is declared outside any methods and blocks is known

as instance variable.

Scope: Throughout the class except in the static methods.

Lifetime: Until the object of the class stays in the memory.

2.Class Variables

A variable which is declared inside a class, outside all the blocks and is declared as static is known

as class variable.

Scope: Throughout the class.

Lifetime: Until the end of the program.

3.Local Variables

All variables which are not instance or class variables are known as local variables.

Scope: Within the block it is declared.

Lifetime: Until control leaves the block in which it is declared.

Example:

public class scope_and_lifetime {

 int num1, num2; //Instance Variables

 static int result; //Class Variable

 int add(int a, int b){ //Local Variables

 num1 = a;

 num2 = b;

 return a+b;

 }

 public static void main(String args[]){

 scope_and_lifetime ob = new scope_and_lifetime();

 result = ob.add(10, 20);

 System.out.println("Sum = " + result);

 }

}

Output:

Sum=30

Module-1 OOPS Through JAVA Page 15

Arrays

 An array is a collection of variables of homogeneous type that occupy contiguous memory

locations.

 Arrays of any type can be created and may have one or more dimensions.

 A specific element in an array is accessed by its index.

 Arrays offer a convenient means of grouping related information. In Java all arrays are dynamically

allocated.

One-Dimensional Arrays

 An array with one dimension is called one-dimensional array.

 Obtaining an array is a two-step process in java. declare a variable of the desired array type.

The general form of a one dimensional array declaration is :

type var-name[];

allocate the memory that will hold the array, using new, and assign it to the array variable. The general

form of allocating memory using new is:

array-var = new type[size];

Here, type specifies the type of data being allocated, size specifies the number of elements in the array,

and array- var is the array variable that is linked to the array. The elements in the array allocated by

new will automatically be initialized to zero.

Example: int marks[];

marks = new int[90];

The above two steps can also be combined into one step as follows;

int marks[]=new int[20];

Accessing Array elements:

One can access a specific element in the array by specifying its index. All array indexes start at

zero. For example, to assign the value 55 to the second element of marks use,

marks[1] = 55;

To display the value stored at index 3.

System.out.println(marks[3]);

Initialization

Arrays can be initialized when they are declared. An array initializer is a list of comma-separated

expressions surrounded by curly braces.

int month_days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

Note: If you try to access elements outside the range of the array (negative numbers or numbers greater

than the length of the array), cause a run-time error.

Example: Write a java program to find a given element using linear search

import java.util.*;

import java.io.*;

class linearsearch {

public static void main(String args[])throws IOException {

BufferedReader br=new BufferedReader(new InputStreamReader(System.in));

System.out.println("Enter n value");

Module-1 OOPS Through JAVA Page 16

int n=Integer.parseInt(br.readLine());

int a[]=new int[n];

System.out.println("Enter array elements");

for(int i=0;i<n;i++)

a[i]=Integer.parseInt(br.readLine());

System.out.println("Enter search element");

int s=Integer.parseInt(br.readLine());

boolean found=false;

for(int i=0;i<n;i++) if(a[i]==s) {

found=true; break;

}

if(found==true)

System.out.println("Element Found");

else

System.out.println("Element not Found");

}

}

Multidimensional Arrays

An array with more than one dimension is called as a multidimensional array.An array with two

dimensions is called a two-dimensional array.

For Example consider the following statement,

int a[][] = new int[4][5];

This creates an array with 4 rows and 5 columns. Internally this matrix is implemented as an array of

arrays ofint. Conceptually, this array will look like the one shown below.

Example: To illustrate two dimensional arrays

class TwoDArray {

public static void main(String args[]) {

int a[][]= new int[4][5];

int i, j, k = 0;

for(i=0; i<4; i++) {

for(j=0; j<5; j++) {

a[i][j] = k; k++;

}

}

for(i=0; i<4; i++) {

for(j=0; j<5; j++)

System.out.print(a[i][j] + " ");

System.out.println();

}

}

}

Module-1 OOPS Through JAVA Page 17

When memory is allocated for a multidimensional array, we need only specify the memory for

the first(leftmost) dimension. We can allocate the remaining dimensions separately.

For example, this following code allocates memory for the first dimension of a when it is

declared. It allocates the second dimension manually.

int a[][] = new int[4][]; a[0] = new int[5];

a[1] = new int[5];

a[2] = new int[5];

a[3] = new int[5];

We can manually allocate differing size second dimensions. int b[][] = new int[4][];

b[0] = new int[1];

b[1] = new int[2];

b[2] = new int[3];

b[3] = new int[4]; The array b looks like below

It is possible to initialize multidimensional arrays. To do so, simply enclose each dimension’s

initializer within its own set of curly braces. We can use expressions as well as literal values inside of

array initializers.

double m[][] = { {0.0, 1.0, 2.0, 3.5},

{0.4, 1.3, 2.0, 3.4},

{0.1, 1.5, 2.5, 3.5},

{0.1, 1.1, 2.2, 3.3}

};

Example : Implement a Java program to multiply two given matrices.

import java.lang.*;

import java.io.*;

class matmul{

public static void main(String args[])throws IOException{

BufferedReader bf=new BufferedReader(new InputStreamReader(System.in));

System.out.println("Enter dimensions of first matrix");

int m=Integer.parseInt(bf.readLine());

int n=Integer.parseInt(bf.readLine());

System.out.println("Enter dimensions of second matrix");

int p=Integer.parseInt(bf.readLine());

int q=Integer.parseInt(bf.readLine());

if(n==p) {

int a[][]=new int[m][n];

int b[][]=new int[p][q];

int c[][]=new int[m][q];

System.out.println("Enter values of the first matrix");

Module-1 OOPS Through JAVA Page 18

for(int i=0;i<m;i++)

for(int j=0;j<n;j++)

a[i][j]=Integer.parseInt(bf.readLine());

System.out.println("Enter values of the second matrix");

for(int i=0;i<p;i++)

for(int j=0;j<q;j++)

b[i][j]=Integer.parseInt(bf.readLine());

for(int i=0;i<m;i++) {

for(int j=0;j<q;j++) {

c[i][j]=0;

for(int k=0;k<n;k++)

c[i][j]=c[i][j]+a[i][k]*b[k][j];

System.out.print(c[i][j]+"\t");

}

System.out.println();

}

}

Operators

■ Most of its operators can be divided into the following four groups: arithmetic, bitwise,

relational, and logical. Java also defines some additional operators that handle certain special

situations

Arithmetic Operators:

■ Arithmetic operators are used in mathematical expressions in the same way that they are used in

algebra.

■ The basic arithmetic operations—addition, subtraction, multiplication, and division

■ The minus operator also has a unary form that negates its single operand

Module-1 OOPS Through JAVA Page 19

// Demonstrate the basic arithmetic operators. class BasicMath {

public static voidmain(Stringargs[]) {

// arithmetic using integers System.out.println("IntegerArithmetic"); int a = 1 +1;

int b = a *3;

int c = b / 4; int d = c - a; int e = -d;

System.out.println("a = " + a);

System.out.println("b = " + b);

System.out.println("c = " + c);

System.out.println("d = " + d);

System.out.println("e = " + e);

}

}

When you run this program, you will see the following output:

Integer Arithmetic a =2

b =6

c =1

d = -1

e = 1

Arithmetic Operators : Modulus operator

■ The modulus operator (%), returns the remainder of a division operation. It can be

■ applied to floating-point types as well as integer types.

class Modulus {

public static void main(String args[]){

 int x = 42;

Module-1 OOPS Through JAVA Page 20

double y = 42.25;

 System.out.println("x mod 10 = " + x % 10);

 System.out.println("y mod 10 = " + y % 10);

}

}

Output:

x mod 10 = 2

y mod 10 = 2.25

Arithmetic Operators : Compound Assignment Operators

■ Java provides special operators that can be used to combine an arithmetic operation with an

assignment.

■ For example, if we want to perform following operation

a=a+5;

■ We can write the above operation as below also.

a+=5;

■ We can perform similar operations on other arithmetic operators also.

■ The compound assignment operators provide two benefits. First, they save you a bit of typing,

■ Second, they are implemented more efficiently by the Java run-time system than are their

equivalent long forms.

class OpEquals {

 public static void main(String args[]) {

 int a = 1, b = 2, c = 3;

 a += 5;

 b *= 4;

 c += a * b;

 c %= 6;

 System.out.println("a = " + a);

 System.out.println("b = " + b);

 System.out.println("c = " + c);

 }

}

Output:

a = 6

b = 8

c = 3

Arithmetic Operators : Increment and Decrement

■ The ++ and the – – are Java’s increment and decrement operators.

■ The increment operator increases its operand by one.

■ The decrement operator decreases its operand by one.

■ For example, the following statement x = x + 1;

■ can also be rewritten like below. x++;

■ Similarity, , the following statement x = x - 1;

Module-1 OOPS Through JAVA Page 21

■ can also be rewritten like below. X--;

■ These operators appears as postfix form or prefix form.

■ In the prefix form, the operand is incremented or decremented before the value is obtained for

use in the expression.

■ In postfix form, the previous value is obtained for use in the expression, and then the operand is

modified.

Arithmetic Operators : Increment and Decrement

■ For example,

X=42;

Y= ++x;

■ In the above example, y is set to 43.

Y=x++;

■ In the above example, y is set to 43 only.

■ Similarly,

X=42;

Y= --x;

■ In the above example, y is set to 41.

Y=x--;

■ In the above example, y is set to 41 only.

■ For example,

X=42;

Y= ++x;

■ In the above example, y is set to 43.

Y=x++;

■ In the above example, y is set to 42 only.

■ Similarly,

X=42;

Module-1 OOPS Through JAVA Page 22

Y= --x;

■ In the above example, y is set to 41.

Y=x--;

■ In the above example, y is set to 41 only.

class IncrDecr{

 public static void main(String[] args){

 int x=42,y;

 y=++x;

 System.out.println("X value :"+x);

 System.out.println("Y value :"+y);

 y=x++;

 System.out.println("X value :"+x);

 System.out.println("Y value :"+y);

 System.out.println("---------------------------------------");

 x=42; y=--x;

 System.out.println("X value :"+x);

 System.out.println("Y value :"+y);

 y=x--;

 System.out.println("X value :"+x);

 System.out.println("Y value :"+y);

 }

}

Output:

X value :43

Y value :43

X value :44

Y value :43

X value :41

Y value :41

X value :40

Y value :41

Relational Operators:

• The relational operators determine the relationship that one operand has to the other.

• The outcome of these operations is a boolean value.

• The relational operators are most frequently used in control statements.

Operator Result

Module-1 OOPS Through JAVA Page 23

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Bitwise Operators:

• Java defines several bitwise operators that can be applied to the integer types, long, int, short, byte,

and char .

• These operators act upon the individual bits of their operands.

Operator Result

~ Bitwise Unary NOT

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

>> Shift right

>>> Shift right zero fill

<< Shift left

&= Bitwise AND assignment

!= Bitwise OR assignment

^= Bitwise exclusive OR

assignment

>>= Shift right assignment

>>>= Shift right zero fill assignment

<<= Shift left assignment

The Bitwise Logical Operators:

• The bitwise logical operators are &, |, ^, and ~. The following table shows the outcome of each

operation.

A B A|B A&B A^B ~A

0 0 0 0 0 1

Module-1 OOPS Through JAVA Page 24

1 0 1 0 1 0

0 1 1 0 1 1

1 1 1 1 0 0

The Bitwise NOT

Also called the bitwise complement, the unary NOT operator, ~, inverts all of the bits of its operand.

For example, the number 42, which has the following bit pattern:

00101010

becomes

11010101 after the NOT operator is applied.

The Bitwise AND

The AND operator, &, produces a 1 bit if both operands are also 1. A zero is produced in all other

cases. Here is an example

00101010 42

&00001111 15

00001010 10

The Bitwise OR

The OR operator, |, combines bits such that if either of the bits in the operands is a 1, then the

resultant bit is a 1, as shownhere:

0010101042

| 00001111 15

0010111147

The Bitwise XOR

The XOR operator, ^, combines bits such that if exactly one operand is 1, then the result is 1.

Otherwise, the result is zero.

0010101042

^0000111115

0010010137

The Left Shift

The left shift operator, <<, shifts all of the bits in a value to the left a specified number of times. It has

this general form:

value << num

Here, num specifies the number of positions to left-shift the value in value. That is, the <<moves all

of the bits in the specified value to the left by the number of bit positions specified by num.

For each shift left, the high-order bit is shifted out (and lost), and a zero is brought in on the right.

This means that when a left shift is applied to an int operand, bits are lost once they are shifted past

bit position

31. If the operand is a long, then bits are lost after bit position 63.

Module-1 OOPS Through JAVA Page 25

Since each left shift has the effect of doubling the original value, programmers frequently use this fact

as an efficient alternative to multiplying by 2.

// Left shifting as a quick way to multiply by2. class MultByTwo{

public static voidmain(Stringargs[]) {

int i;

int num = 0xFFFFFFE; for(i=0; i<4; i++) {

num = num << 1; System.out.println(num);

}

}

}

The program generates the following output:

536870908

1073741816

2147483632

-32

The Right Shift

The right shift operator, >>, shifts all of the bits in a value to the right a specified number of times. Its

general form is shown here:

value >> num

Here, num specifies the number of positions to right-shift the value in value. That is, the >>moves all

of the bits in the specified value to the right the number of bit positions specified bynum.

When a value has bits that are “shifted off,” those bits are lost. For example, the next code fragment

shifts the value 35 to the right two positions, which causes the two low-order bits to be lost, resulting

again in a being set to 8.

int a = 35;

a = a >> 2; // a still contains 8

Looking at the same operation in binary shows more clearly how

thishappens: 0010001135

>> 2000010008

Each time you shift a value to the right, it divides that value by two—and discards any remainder.

the previous contents of the top bit. This is called sign extension and serves to preserve the sign of

negative numbers when you shift them right. For example, –8 >> 1 is –4, which, in binary, is

11111000 –8

>> 111111100 –4

It is interesting to note that if you shift –1 right, the result always remains –1, since sign extension

keeps bringing in more ones in the high-order bits.

The Unsigned Right Shift

As you have just seen, the >>operator automatically fills the high-order bit with its previous

contents each time a shift occurs. This preserves the sign of the value. However, sometimes this is

Module-1 OOPS Through JAVA Page 26

undesirable.

For example, if you are shifting something that does not represent a numeric value, you may not

want sign extension to take place. This situation is common when you are working with pixel-

based values and graphics. In these cases, you will generally want to shift a zero into the high-order

bit no matter what its initial value was. This is known as an unsigned shift.

To accomplish this, you will use Java’s unsigned, shift-right operator, >>>, which always shifts

zeros into the high-order bit.

The following code fragment demonstrates the >>>. Here, a is set to –1, which sets all 32 bits to 1

in binary. This value is then shifted right 24 bits, filling the top 24 bits with zeros, ignoring normal

sign extension. This sets a to255.

int a = -1;

a = a >>> 24;

Here is the same operation in binary form to further illustrate what is happening:

11111111 11111111 11111111 11111111 –1 in binary as an int

>>>24

00000000 00000000 00000000 11111111 255 in binary as an int

// Demonstrate the boolean logical operators. class BoolLogic {

public static void main(String args[]){ boolean a =true;

boolean b = false; boolean c = a |b;

boolean d = a & b; boolean e = a ^ b;

boolean f = (!a & b) | (a & !b);

boolean g = !a;

System.out.println(" a = " + a);

System.out.println(" b = " + b);

System.out.println(" a|b = " + c);

System.out.println(" a&b = " + d);

System.out.println(" a^b = " + e);

System.out.println("!a&b|a&!b = " + f);

System.out.println(" !a = " + g);

}

}

Output:

a = true

b = false

a|b = true

a&b = false

a^b =true

a&b|a&!b = true

!a = false

Short-Circuit Logical Operators

Module-1 OOPS Through JAVA Page 27

Java provides two interesting Boolean operators not found in many other computer languages.

These are secondary versions of the Boolean AND and OR operators, and are known as short-

circuit logical operators.

If you use the || and &&forms, Java will not bother to evaluate the right-hand operand when

the outcome of the expression can be determined by the left operand alone. This is very useful

when the right-hand operand depends on the value of the left one in order to function properly.

For example, the following code fragment shows how you can take advantage of short-circuit

logical evaluation to be sure that a division operation will be valid before evaluating it:

if (denom != 0 && num / denom > 10)

Since the short-circuit form of AND (&&) is used, there is no risk of causing a run-time exception

when denom is zero. If this line of code were written using the single &version of AND, both sides

would be evaluated, causing a run-time exception when denom is zero.

The Assignment Operator

The assignment operator is used to assign a value to variable.The assignment operator is the single

equal sign, =.

It has this general form:

var = expression;

Here, the type of var must be compatible with the type of expression.

it allows you to create a chain of assignments. For example

int x, y, z;

x = y = z = 100; // set x, y, and z to 100

Using a “chain of assignment” is an easy way to set a group of variables to a common value.

The ? Operator

Java includes a special ternary (three-way) operator that can replace certain types of if-then-else

statements. This operator is the ?.

The ? has this general form:

expression1 ? expression2 : expression3

Here, expression1 can be any expression that evaluates to a boolean value. If expression1 is true,

then

expression2 is evaluated; otherwise, expression3 is evaluated.

class Ternary{

Module-1 OOPS Through JAVA Page 28

public static voidmain(Stringargs[]) { int i, k;

i = 10;

k = i < 0 ? -i : i; // get absolute

value of i

System.out.print("Absolute

value of "); System.out.println(i

+ " is " + k);

}

}

Output:

Absolute value of 10 is 10

Java has well-defined rules for specifying the order in which the operators in an expression are

evaluated when the expression has several operators. For example, multiplication and division have

a higher precedence than addition and subtraction. Precedence rules can be overridden by explicit

parentheses.

First Simple Program Entering the Program

Java is a case sensitive language. The name you give to a source file is very important. For

this example, the name of the source file should be Example.java. The Java compiler requires that

a source file use the .java filename extension.

/* simple java

program */

import

java.lang.*;

class Example{

public static void main (String args[]){

System.out.println("Welcome to java");

}

}

The name of the class defined by the program is also Example. In Java, all code must reside

inside a class. By convention, the name of that class should match the name of the file that holds

the program.

Comments

The contents of a comment are ignored by the compiler. Java supports three styles of comments.

 Single line comment://

 Multilinecomment:/* */

 Documentationcomment:/** */. This type of comment is used to producean HTML file

that documents your program. This type of comment is readable to both, computer and human.

Module-1 OOPS Through JAVA Page 29

Defining a class

This line uses the keyword class to declare that a new class is being defined. Example is an

identifier that is the name of the class. The entire class definition, including all of its members, will

be between the opening curly brace and the closing curly brace ({, }).

public static void main(String args[])

This is the line at which the program will begin executing. All Java applications begin

execution by calling main().

The public keyword is an access specifier. When a class member is preceded by public,

then that member may be accessed by code outside the class in which it is declared. (private and

protected are other access specifiers).

The function main() must be declared as public, since it must be called by code outside of its class

when the program is started.

The keyword static allows main() to be called without having to instantiate a particular instance of

the class. This is necessary since main() is called by the Java interpreter before any objects are

made.

Java compiler will compile classes that do not contain a main() method. But the Java interpreter

has no way to run these classes. In applets you won’t use main().

The keyword void simply tells the compiler that main() does not return a value.

In main(), there is only one parameter. String args[] declares a parameter named args, which is

an array of instances of the class String. (Arrays are collections of similar objects.) Objects of type

String store character strings. In this case, args receives any command-line arguments present

when the program is executed.

To display output

System.out.println("Welcome to Java");

This line outputs the string “Welcolme to java” followed by a new line on the screen. Output is

actually accomplished by the built-in println() method. In this case, println() displays the string

which is passed to it. The line begins with System.out. in which System is a predefined class that

provides access to the system, and out is the output stream that is connected to theconsole.

Note:

 Every statement in Java ends with asemicolon.

 Java is a case sensitivelanguage.

System.out.println()

Module-1 OOPS Through JAVA Page 30

num = 100;

System.out.println("This is num: " + num);

The first line declares an integer variable called num assigns to num the value 100. The next line of

code outputs the value of num preceded by the string “This is num:”.

In this statement, the plus sign causes the value of num to be appended to the string that precedes

it, and then the resulting string is output. (Actually, num is first converted from an integer into its

string equivalent and then concatenated with the string that precedesit.

Using the + operator, you can string together as many items as you want within a single println()

statement.

The built-in method print() is just like println(), except that it does not output a newline

character System.out.print("Example to display output ");

Note

Both print() and println() can be used to output values of any of Java’s built-in types.

Compiling and executing the Program

To compile the Example program, execute the following command at command prompt:

C:\>javac Example.java

The javac compiler creates a file called Example.class that contains the bytecode version of the

program. The Java bytecode is the intermediate representation of a program that contains

instructions the Java interpreter will execute. The output of javac is not code that can be directly

executed.

To actually run the program, use the Java interpreter, called java. To do so, pass the class name

Example

as a command-line argument, as shown here:

C:\>java Example

When the program is run, the following output is displayed:

Welcome to java

Expressions

■ An expression is a sequence of operands and operators that reduces to a single value.

■ An expression can be simple or complex.

■ An operator takes an action.

■ An operand is an object on which an operation is performed. Every language has operators

whose actions are clearly specified in the language syntax.

■ A Simple expression contains only one operator. For example, 2+5. and -a.

■ A complex expression contains more than one operator. For example, 2+5*7.

Control Statements

Control statements can be put into the following categories: selection, iteration, and jump.

Module-1 OOPS Through JAVA Page 31

 Selection statements allow your program to choose different paths of execution based upon

the outcome of an expression or the state of avariable.

 Iteration statements enable program execution to repeat one or more statements (that is,

iteration statements formloops).

 Jump statements allow your program to execute in a nonlinearfashion.

Java’s Selection Statements

Java supports two selection statements: if and switch. These statements allow you to control the flow

of your program’s execution based upon conditions known only during run time.

If:

The if statement is Java’s conditional branch statement. It can be used to route program execution

through two different paths.

Here is the general form of the if

statement: if (condition)

statement1;

else statement2;

Here, each statement may be a single statement or a compound statement enclosed in curly braces

(that is, a

block). The condition is any expression that returns a boolean value. The else clause is optional.

The if works like this: If the condition is true, then statement1 is executed. Otherwise, statement2

(if it exists) is executed. In no case will both statements be executed. For example, consider the

following:

int a, b;

// ...

if(a < b) a = 0; else b = 0;

Here, if a is less than b, then a is set to zero. Otherwise, b is set to zero. In no case are they both set

to zero. Most often, the expression used to control the if will involve the relational operators.

However, this is not technically necessary. It is possible to control the if using a single boolean

variable.

class BoolIf {

public static voidmain(Stringargs[]) {

booleanb;

b = false;

System.out.println("b is " + b);

b =true;

System.out.println("b is " + b);

// a boolean value can control the if statement if(b)

Module-1 OOPS Through JAVA Page 32

System.out.println("This is executed."); b = false;

if(b)

System.out.println("This is not executed.");

// outcome of a relational operator is a boolean value System.out.println("10 > 9 is " +

(10 > 9));

}

}

The output generated by this program is shown here:

b is false b is true

This is executed.

10 > 9 is true

Nested ifs

Anested if is an if statement that is the target of another if or else. Nested ifs are very common in

programming. When you nest ifs, the main thing to remember is that an else statement always

refers to the nearest if statement that is within the same block as the else and that is not already

associated with an else. Here is an example:

if(i = = 10){

if(j < 20) a = b;

if(k > 100) c = d; // this if is

else a = c; // associated with this else

}

else a = d; // this else refers to if(i == 10)

As the comments indicate, the final else is not associated with if(j<20) because it is not in the same

block (even though it is the nearest if without an else). Rather, the final elseis associated with

if(i==10). The inner else refers to if(k>100) because it is the closest if within the sameblock.

The if-else-if Ladder

A common programming construct that is based upon a sequence of nested ifs is the if-else-if

ladder. It looks like this:

if(condition)

statement;

 elseif(condition)

statement;

elseif(condition)

statement;

...

else

statement;

Module-1 OOPS Through JAVA Page 33

The if statements are executed from the top down. As soon as one of the conditions controlling

the if istrue, the statement associated with that if is executed, and the rest of the ladder is bypassed.

 If none of the conditions is true, then the final else statement will be executed. The final else acts

as a default condition; that is, if all other conditional tests fail, then the last else statement is performed.

If there is no final else and all other conditions are false, then no action will take place.

class Test{

public static voidmain(Stringargs[]) {

int x =30;

if(x ==0) {

System.out.print("Value of X is 0");

}

else if(x>0) {

System.out.print("Value of X is Positive");

}

else if(x <0) {

System.out.print("Value of X

isNegative");

}

}

}

// Demonstrate if-else-if

statements. class IfElse {

public static voidmain(Stringargs[]) {

int month=4; // April Stringseason;

if(month == 12 || month == 1 || month == 2) season = "Winter";

else if(month == 3 || month == 4 || month == 5) season = "Spring";

else if(month == 6 || month == 7 || month == 8) season = "Summer";

else if(month == 9 || month == 10 || month == 11) season = "Autumn";

else

season = "Bogus Month";

System.out.println("April is in the " + season + ".");

}

}

Here is the output produced by the program:

April is in the Spring.

switch

The switch statement is Java’s multiway branch statement. It provides an easy way to dispatch

execution to different parts of your code based on the value of an expression. As such, it often

provides a better alternative than a large series of if-else-if statements.

Here is the general form of a switch statement:

switch (expression){

Module-1 OOPS Through JAVA Page 34

casevalue1:

// statement sequence

break;

casevalue2:

// statement sequence

break;

 …

casevalueN:

// statement sequence

break;

default:

// default statement sequence

}

The expression must be of type byte, short, int, or char; each of the values specified in the case

statements must be of a type compatible with the expression.

Each case value must be a unique literal (that is, it must be a constant, not a variable). Duplicate case

values are not allowed.

The switch statement works like this:

The value of the expression is compared with each of the literal values in the case

statements. If a match is found, the code sequence following that case statement is executed. If

none of the constants matches the value of the expression, then the default statement is executed.

However, the default statement is optional. If no case matches and no default is present, then no

further action istaken.

The break statement is used inside the switch to terminate a statement sequence. When a break

statement is encountered, execution branches to the first line of code that follows the entire switch

statement. This has the effect of “jumping out” of theswitch.

// A simple example of the

switch. class SampleSwitch{

public static voidmain(Stringargs[]) { for(int i=0; i<6;i++)

switch(i){

case 0: System.out.println("i is zero.");

break;

case1:

System.out.println("i is one.");

break;

case2:

System.out.println("i is two.");

Module-1 OOPS Through JAVA Page 35

break;

case3:

System.out.println("i is three.");

break;

default:

System.out.println("i is greater than3.");

}

}

}

The output produced by this program is shown here:

i is zero.

i is one.

i is two.

i is three.

i is greater han 3.

i is greater than 3.

Iteration Statements

Java’s iteration statements are for, while, and do-while. These statements create loops. A loop

repeatedly executes the same set of instructions until a termination condition is met.

while

The while loop is Java’s most fundamental loop statement. It repeats a statement or block while its

controlling expression is true.

Here is its general form:

while(condition) {

// body of loop

}

The condition can be any Boolean expression. The body of the loop will be executed as long as the

conditional expression is true. When condition becomes false, control passes to the next line of

code immediately following the loop. The curly braces are unnecessary if only a single statement is

being repeated.

class WhileDemo {

public static voidmain(Stringargs[]) { int n =5;

while(n>0) {

System.out.println("Value = " + n);

n--;

}

}

}

Output:

Value=1

Module-1 OOPS Through JAVA Page 36

Value=2

Value=3

Value=4

Value=5

do-while

Since the while loop evaluates its conditional expression at the top of the loop, the body of the

loop will not execute even once if the condition is initially false (the body of the loop will not be

executed atall).

However, sometimes it is desirable to execute the body of a loop at least once, even if the

conditional expression is false initially. In other words, there are times when you would like to test

the termination expression at the end of the loop rather than at the beginning. To serve this purpose

java supplies do-while loop.

The do-while loop always executes its body at least once, because its conditional expression is at

the bottom of the loop.

Its general form is

do {

// body of loop

} while (condition);

Each iteration of the do-while loop first executes the body of the loop and then evaluates the

conditional expression. If this expression is true, the loop will repeat. Otherwise, the loop

terminates.

class DoWhile {

public static voidmain(Stringargs[]) {

int n =5;

do {

System.out.println("Value = " + n);

n--;

} while(n > 0);

}

}

The do-while loop is especially useful when you process a menu selection, because you will

usually want the body of a menu loop to execute at least once.

import java.util.scanner;

public class ConsoleMenuDemo {

public static void main(String[] args) {

// Local variable

Module-1 OOPS Through JAVA Page 37

int choice,a,b;

Scanner s=new Scanner(System.in);

do{

System.out.println(" MENU SELECTION DEMO ");

System.out.println("============================");

System.out.println(" 1.addition "); System.out.println(" 2.subtraction ");

System.out.println(" 3.multiplication");

System.out.println("============================");

choice = s.nextInt();

 }while(choice<1 || choice >3);

switch (choice) {

case 1:

System.out.println(" enter value of a and b");

a = s.nextInt();

b = s.nextInt();

System.out.println(“a+b =”+(a+b));

break;

case 2:

System.out.println(" enter value of a and b");

a = s.nextInt();

b = s.nextInt();

System.out.println(“a-b =”+(a-b));

break;

case 3:

System.out.println(" enter value of a and b");

a = s.nextInt();

b = s.nextInt(); System.out.println(“a*b =”+(a*b));

break;

default:

 System.out.println("Invalid selection");

break; // This break is not really necessary

}

}

}

for:

There are two forms of the for loop. The first is the traditional form that has been in use since the

original version of Java. The second is the new “for-each” form.

the general form of the traditional for statement:

for(initialization;condition;iteration) {

// body

Module-1 OOPS Through JAVA Page 38

}

If only one statement is being repeated, there is no need for the curly braces.

The for loop operates as follows.

When the loop first starts, the initialization portion of the loop is executed. Generally, this is an

expression that sets the value of the loop control variable, which acts as a counter that controls the

loop. It is important to understand that the initialization expression is only executed once.

Next, condition is evaluated. This must be a Boolean expression. It usually tests the loop control

variable against a target value. If this expression is true, then the body of the loop is executed. If it

is false, the loop terminates.

Next, the iteration portion of the loop is executed. This is usually an expression that

increments or decrements the loop control variable.

The loop then iterates, first evaluating the conditional expression, then executing the body of the

loop, and then executing the iteration expression with each pass. This process repeats until the

controlling expression is false.

class ForTick {

public static voidmain(Stringargs[]) { int n;

for(n=5; n>0; n--)

System.out.println("tick = " + n);

}

}

Output:

tick =5

tick =4

tick =3

tick =2

tick =1

Declaring Loop Control Variables Inside the for Loop

Sometimes, the variable that controls a for loop is only needed for the purposes of the loop

and is not used elsewhere. When this is the case, it is possible to declare the variable inside the

initialization portion of the for.

// Declare a loop control variable inside

the for. class ForTick {

public static voidmain(Stringargs[]) {

// here, n is declared inside of the for

loop for(int n=5; n>0; n--)

System.out.println("tick = " + n);

}

Module-1 OOPS Through JAVA Page 39

}

Output: tick =5

tick =4

tick =3

tick =2

tick =1

When you declare a variable inside a for loop, there is one important point to remember:

The scope of that variable ends when the for statement does. (That is, the scope of the

variable is limited to the for loop.) Outside the for loop, the variable will cease to exist. If you need

to use the loop control variable elsewhere in your program, you will not be able to declare it inside

the for loop.

The For-Each Version of the for Loop:

A foreach style loop is designed to cycle through a collection of objects, such as an array, in strictly

sequential fashion, from start to finish. The for-each style of for is also referred to as the enhanced

for loop.

The general form of the for-each version of the for is shown here:

for(type itr-var : collection) statement-block

Here, type specifies the type and itr-var specifies the name of an iteration variable that will receive

the elements from a collection, one at a time, from beginning to end. There are various types of

collections that can be used with the for.

Example:

// Use a for-each style

for loop. class ForEach

public static voidmain(Stringargs[]) {

int nums[] = { 1, 2, 3, 4, 5};

int sum = 0;

// use for-each style for to display and sum thevalues

for(int x:nums) {

System.out.println("Value is: " + x);

sum += x;

}

System.out.println("Summation: " + sum);

}

}

The output from the program is

shown here. Value is:1

Value is:2

Value is:3

Value is:4

Value is:5

Summation: 55

Module-1 OOPS Through JAVA Page 40

As this output shows, the for-each style for automatically cycles through an array in sequence

from the lowest index to the highest.

With each pass through the loop, x is automatically given a value equal to the next element in

nums. Thus, on the first iteration, x contains 1; on the second iteration, x contains 2; and so on.

Not only is the syntax streamlined, but it also prevents boundary errors.

Although the for-each for loop iterates until all elements in an array have been examined, it is

possible to terminate the loop early by using a break statement.

For example, this program sums only the first five elements of nums:

// Use break with a for-each

style for. class ForEach2 {

public static voidmain(Stringargs[]) {

 int sum =0;

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

// use for to display and sum the values

for(int x:nums){

System.out.println("Value is: " + x);

sum += x;

if(x == 5) break; // stop the loop when 5 is obtained

}

System.out.println("Summation of first 5 elements: " + sum);

}

}

This is the output produced:

Value is:1

Value is:2

Value is:3

Value is:4

Value is:5

Summation of first 5 elements: 15

There is one important point to understand about the for-each style loop.

Its iteration variable is “read-only” as it relates to the underlying array. An assignment to

the iteration variable has no effect on the underlying array. In other words, you can’t change the

contents of the array by assigning the iteration variable a new value.

Example:

// The for-each loop is essentially

read-only. class NoChange {

public static voidmain(Stringargs[]) {

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

for(int x:nums) {

Module-1 OOPS Through JAVA Page 41

 System.out.print(x + "");

x = x * 10; // no effect on nums

}

System.out.println(); for(int x : nums)

System.out.print(x + " "); System.out.println();

}

}

The first for loop increases the value of the iteration variable by a factor of 10. However, this

assignment has no effect on the underlying array nums, as the second for loop illustrates.

The output, shown here, proves

this point: 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Iterating Over Multidimensional Arrays

The enhanced version of the for also works on multidimensional arrays. Remember,

multidimensional arrays consist of arrays of arrays. (For example, a two-dimensional array is an

array of one-dimensional arrays.)

This is important when iterating over a multidimensional array, because each iteration obtains the

next array, not an individual element. Furthermore, the iteration variable in the for loop must be

compatible with the type of array beingobtained.

For example, in the case of a two-dimensional array, the iteration variable must be a reference to a

one- dimensional array. In general, when using the for-each for to iterate over an array of N

dimensions, the objects obtained will be arrays of N–1 dimensions. To understand the implications

of this, consider the following program. It uses nested for loops to obtain the elements of a two-

dimensional array in roworder, from first tolast.

// Use for-each style for on a two-

dimensionalarray. class ForEach3{

public static void main(String args[]) { int sum = 0,k=0;

int nums[][] = new int[3][5];

// give nums some values for(int i = 0; i < 2; i++)

for(int j=0; j < 3; j++)

nums[i][j] = k++;

// use for-each for to display and sum the values

for(int x[]: nums) {

 for(int y: x) {

System.out.println("Value is: " + y);

sum += y;

}

Module-1 OOPS Through JAVA Page 42

}

System.out.println("Summation: " + sum);

}

}

The output from this program is shown here:

Value is:0

Value is:1

Value is:2

Value is:3

Value is:4

Value is:5

Summation: 15

In the program, pay special attention tothisline: for(int x[] :nums)

Notice how x is declared. It is a reference to a one-dimensional array of integers. This is necessary

because each iteration of the for obtains the next array in nums, beginning with the array specified

by nums[0]. The inner for loop then cycles through each of these arrays, displaying the values of

eachelement.

// Search an array using for-each

style for. class Search {

public static voidmain(Stringargs[]) {

 int nums[] = { 6, 8, 3, 7, 5, 6, 1, 4};

int val = 5;

boolean found = false;

// use for-each style for to search nums forval

 for(int x:nums) {

if(x==val){

found = true;

break;

}

}

if(found)

System.out.println("Value found!");

}

}

Jump Statements

Java supports three jump statements: break, continue, and return. These statements transfer control

to another part of your program.

break

In Java, the break statement has three uses.

1. It terminates a statement sequence in a switchstatement.

2. It can be used to exit aloop.

Module-1 OOPS Through JAVA Page 43

3. break can be used as a “civilized” form of goto. The last two uses are explainedhere.

Using break to Exit a Loop:

 By using break, you can force immediate termination of a loop, bypassing the conditional

expression and any remaining code in the body of theloop.

 When a break statement is encountered inside a loop, the loop is terminated, and program

control resumes at the next statement following theloop.

// Using break to

exit a loop. class

BreakLoop {

public static voidmain(Stringargs[]) {

 for(int i=0; i<100;i++){

if(i == 5) break; // terminate loop if i is 10

System.out.println("i = " + i);

}

System.out.println("Loop complete.");

}

}

This program generates the following output:

i = 0

i =1

i = 2

i = 3

i = 4

Loop complete.

Continue:

Sometimes it is useful to force an early iteration of a loop. That is, you might want to continue

running the loop but stop processing the remainder of the code in its body for this particular

iteration. The continue statement performs such an action.

In while and do-while loops, a continue statement causes control to be transferred directly to the

conditional expression that controls the loop.

class ContinueEx{

 public static void main(String[] args){

 int i,n=10;

 for(i=1;i<=n;i++){

 if(i==5)

 continue;

 System.out.println("i value is: "+i);

 }

}

}

Output:

Module-1 OOPS Through JAVA Page 44

i value is: 1

i value is: 2

i value is: 3

i value is: 4

i value is: 6

i value is: 7

i value is: 8

i value is: 9

i value is: 10

Return:

The return statement is used to explicitly return from a method. That is, it causes program

control to transfer back to the caller of the method.

At any time in a method the return statement can be used to cause execution to branch back to

the caller of the method. Thus, the return statement immediately terminates the method in which it is

executed.

The following example illustrates this point. Here, return causes execution to return to the Java run-

time system, since it is the run-time system that calls main().

// Demonstrate return.

class Return {

public static voidmain(Stringargs[]) {

 boolean t =true;

System.out.println("Before the return.");

if(t)

return; // return tocaller

System.out.println("This won't execute.");

}

Output:

}

Before the return.

As you can see, the final println() statement is not executed. As soon as return is executed, control passes

back to the caller.

One last point: In the preceding program, the if(t) statement is necessary. Without it, the Java compiler

would flag an “unreachable code” error because the compiler would know that the last println() statement

would never be executed. To prevent this error, the if statement is used here to trick the compiler for the

sake of this demonstration.

Type Conversion andCasting

Java’s AutomaticConversions

Module-1 OOPS Through JAVA Page 45

When one type of data is assigned to another type of variable, an automatic type conversion will take place

if the following two conditions are met:

1. The two types arecompatible.

2. The destination type is larger than the sourcetype.

When these two conditions are met, a widening conversion takes place. For example, the int type is always

large enough to hold all valid byte values, so no explicit cast statement is required.

For widening conversions, the numeric types, including integer and floating-point types,

are compatible with each other.

However, there are no automatic conversions from the numeric types to char or boolean. Also, char and

boolean are not compatible with each other.

As mentioned earlier, Java also performs an automatic type conversion when storing a literal integer

constant into variables of type byte, short, long, or char.

Casting Incompatible Types

Although the automatic type conversions are helpful, they will not fulfill all needs. For example, what if

you want to assign an int value to a byte variable? This conversion will not be performed automatically,

because a byte is smaller than an int. This kind of conversion is sometimes called a narrowing conversion,

since you are explicitly making the value narrower so that it will fit into the target type.

To create a conversion between two incompatible types, you must use a cast. A cast is simply an explicit

type conversion.

It has thisgeneralform: (target-type)value

Here, target-type specifies the desired type to convert the specified value to. For example, the following

fragment casts an int to a byte. If the integer’s value is larger than the range of a byte, it will be reduced

modulo (the remainder of an integer division by the) byte’s range.

int a; byte b;

// ...

b = (byte) a;

A different type of conversion will occur when a floating-point value is assigned to an integer type:

truncation. As you know, integers do not have fractional components. Thus, when a floating-point value is

assigned to an integer type, the fractional component is lost.

For example, if the value 1.23 is assigned to an integer, the resulting value will simply be 1.

The 0.23 will have been truncated. Of course, if the size of the whole number component is too large to fit

into the target integer type, then that value will be reduced modulo the target type’s range.

Module-1 OOPS Through JAVA Page 46

The following program demonstrates some type conversions that require casts:

// Demonstrate casts.

class Conversion {

public static voidmain(Stringargs[]) {

 byteb;

int i = 257;

double d = 323.142;

System.out.println("\nConversion of int to byte.");

b = (byte) i;

System.out.println("i and b " + i + " " + b);

System.out.println("\nConversion of double to int.");

i = (int) d;

System.out.println("d and i " + d + " " + i);

System.out.println("\nConversion of double to byte."); b = (byte) d;

System.out.println("d and b " + d + " " + b);

}

}

Output:

Conversion of int to byte. i and b 257 1

Conversion of double to int. d and i 323.142 323

Conversion of double to byte. d and b 323.14267

Let’s look at each conversion. When the value 257 is cast into a byte variable, the result is the remainder of

the division of 257 by 256 (the range of a byte), which is 1 in this case.

When the d is converted to an int, its fractional component is lost. When d is converted to a byte, its

fractional component is lost, and the value is reduced modulo 256, which in this case is 67.

Simple Java Program

The requirement for Java Hello World Example

For executing any Java program, the following software or application must be properly installed.

o Install the JDK if you don't have installed it, download the JDK and install it.

o Set path of the jdk/bin directory. http://www.javatpoint.com/how-to-set-path-in-java

o Create the Java program

o Compile and run the Java program

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.javatpoint.com/how-to-set-path-in-java

Module-1 OOPS Through JAVA Page 47

Example

class Simple{

 public static void main(String args[]){

 System.out.println("Hello Java");

 }

}

Compile by: javac Simple.java

Run by: java Simple

Output:

Hello Java

Page 1 Module-2 OOPS Through

JAVA

Syllabus: Basics of Java

Module-2

Classes and Objects - Concepts of Classes, Objects, Constructors, Methods, This Keyword,

Garbage Collection, Overloading Methods and Constructors, Parameter Passing, Recursion,

String Handling: String, String Buffer, String Tokenizer.

Inheritance - Base Class Object, Subclass, Member Access Rules, Super keyword, final

keyword, Method Overriding, Abstract Classes.

Page 2 Module-2 OOPS Through

JAVA

class Box {

double width, height, depth;

}

Box mybox = new Box(); // create a Box object called mybox

Class fundamentals

The class is at the core of Java. The class is a logical construct which defines the shape and

nature of an object.

A class defines a new data type. Once defined, this new type can be used to create objects

of that type. Thus, a class is a template for an object, and an object is an instance of a class.

The General Form of a Class

A class contains both the data and the code that operates on that data. A class is declared by use

of the class keyword. The general form of a class definition is:

class classname {

type instance-variable1; type instance-variable2;

// ...

type instance-variableN;

type methodname1(parameter-list) {

// body of method

}

type methodname2(parameter-list) {

// body of method

}

// ...

type methodnameN(parameter-list) {

// body of method

}

}

The data, or variables, defined within a class are called instance variables. The code is

contained within methods. Collectively, the methods and variables defined within a class are called

members of the class.

Variables defined within a class are called instance variables because each instance of the

class (that is, each object of the class) contains its own copy of these variables. Thus, the data for

one object is separate and unique from the data for another.

A Simple Class Example:

Here is a class called Box that defines three instance variables: width, height, and depth.

Currently, Box does not contain any methods.

A class defines a new type of data. In this case, the new data type is called Box. This name

can be used to declare objects of type Box. It is important to remember that a class declaration

only creates a template; it does not create an actual object.

To actually create a Box object, you will use a statement like the following:

After this statement executes, mybox will be an instance of Box. Thus, it will have

“physical” reality. Every Box object will contain its own copies of the instance variables width,

height, and depth.

To access variables, use the dot (.) operator along with the object name. The dot operator

links the name of the object with the name of an instance variable. To assign a value to the data

member the syntax is as follows.

Page 3 Module-2 OOPS Through

JAVA

 Object . datamember;

Example: to assign the width variable of mybox the value 100, you would use the following

statement: mybox.width = 100;

We should save this file that contains this program BoxDemo.java, because the main()

method is in the class called BoxDemo, not in the class called Box.

To run this program, you must execute BoxDemo.class. When you do, you will see the

following Output:

Volume is 3000.0

Example2: To illustrate creation of class and object

class student {

int no;

char grade; float percent;

}

class demo {

public static void main(String args[]) {

student s=new student();

s.no=10; s.grade='c';

s.percent=98;

System.out.println(“number =”+s.no);

System.out.println(“grade =”+s.grade);

System.out.println(“percent =”+s.percent);

}

}

Output:

Number =10

Grade=c

percent=98

We should save this file that contains this program demo.java, because the main() method

is in the class called demo, not the class called student.

Declaring Objects:

With a class definition a new data type is created. We can use this type to declare objects

of that type. Obtaining objects of a class is a two-step process.

/* A program that uses the Box class. Call this file BoxDemo.java

*/

class Box {

double width; double height; double depth;

}

// This class declares an object of type Box.

class BoxDemo {

public static void main(String args[]) {

Box mybox = new Box(); double vol;

// assign values to mybox's instance variables

mybox.width = 10;

mybox.height = 20;

mybox.depth = 15;

// compute volume of box

vol = mybox.width * mybox.height * mybox.depth;

System.out.println("Volume is " + vol);

}

}

Page 4 Module-2 OOPS Through

JAVA

Box mybox; // declare reference to object

mybox = new Box(); // allocate a Box object

Box mybox = new Box();

class-var = new classname();

• First, declare a variable of the class type. This variable does not define an object. Instead, it

is simply a variable that can refer to an object.

• Second, acquire an actual, physical copy of the object and assign it to that variable. This can

be done using the new operator. The new operator dynamically allocates (that is, allocates at

run time) memory for an object and returns a reference to it.

This reference is, more or less, the address in memory of the object allocated by new. This

reference is then stored in the variable. This reference is then stored in the variable.

Example:

The first line declares mybox as a reference to an object of type Box. After this line

executes, mybox contains the value null, which indicates that it does not yet point to an actual

object. Any attempt to use mybox at this point will result in a compile-time error.

The next line allocates an actual object and assigns a reference to it to mybox. After the

second line executes, you can use mybox as if it were a Box object. But in reality, mybox simply

holds the memory address of the actual Box object.

The effect of these two lines of code is depicted in the figure as follows

The above two statements can also be combines into a single statement as follows

The new operator:

The new operator dynamically allocates memory for an object. It has the general form:

Here, class-var is a variable of the class type being created. The classname is the name of

the class that is being instantiated. The class name followed by parentheses specifies the

constructor for the class. A constructor defines what occurs when an object of a class is created.

It is important to understand that new allocates memory for an object during run time. The

advantage of this approach (using new) is that the program can create as many or as few objects

as it needs during the execution of the program.

The distinction between a class and an object:

• A class creates a new data type that can be used to create objects. That is, a class creates a

logical framework that defines the relationship between its members.

• When we declare an object of a class, we are creating an instance of that class. Thus, a class

is a logical construct. An object has physical reality. (That is, an object occupies space in

memory.)

Page 5 Module-2 OOPS Through

JAVA

type name(parameter-list) {

// body of method

}

Assigning Object Reference Variables:

Object reference variables act differently than you might expect when an assignment takes place.

For example:

Here b2 is being assigned a reference to a copy of the object referred to by b1. That means

b1 and b2 will both refer to the same object.

The assignment of b1 to b2 did not allocate any memory or copy any part of the original

object. It simply makes b2 refer to the same object as does b1. Thus, any changes made to the

object through b2 will affect the object to which b1 is referring, since they are the same object.

This situation is depicted here:

For example, a subsequent assignment to b1 will simply unhook b1 from the original object

without affecting the object or affecting b2.

For example:

Box b1 = new Box();

Box b2 = b1;

// ...

b1 = null;

Here, b1 has been set to null, but b2 still points to the original object.

Introducing Methods

Classes usually consist of two things: instance variables and methods. In most classes, the

instance variables are acted upon and accessed by the methods defined for that class. Thus the

methods that determine how a class’ data can be used.

The general form of a method is:

• Here, type specifies the type of data returned by the method. If the method does not return a

value, its return type must be void.

• The name of the method is specified by name.

• The parameter-list is a sequence of type and identifier pairs separated by commas.

Methods that have a return type other than void return a value to the calling routine using the

following form of the return statement:

return value;

Here, value is the value returned.

Adding a Method to the Box Class:

Methods provide access to data. In addition to defining methods that provide access to

data, we can also define methods that are used internally by the class itself.

// This program includes a method inside the box class.

class Box {

Output:

Volume is 3000.0

Box b1 = new Box();

Box b2 = b1;

Page 6 Module-2 OOPS Through

JAVA

b1.volume(); invokes the volume() method ,that is, it calls volume() relative to the b1

object, using the object’s name followed by the dot operator.

When b1.volume() is executed, the Java run-time system transfers control to the code

defined inside volume(). After all the statements inside volume () have executed, control is

returned to the calling routine, and execution resumes with the line of code following the call.

Returning a Value:

A better way to implement volume() is to have it compute the volume of the box and return the

result to the caller.

class Box {

double width, height, depth;

// compute and return volume double

volume() {

return (width * height * depth);

}

}

class BoxDemo

 {

public static void main(String args[]) {

 Box b1 = new Box();

Double vol;

// assign values to mybox1's instance variables b1.width =

10;

b1.height = 20;

b1.depth = 15;

// display volume of box vol=b1.volume();

System.out.println("Volume is " + vol);

}

}

Output:

Volume is

3000.0

double width, height, depth;

// display volume of a box

void volume(){

System.out.print("Volume is ");

System.out.println(width * height * depth);

}

}

class BoxDemo {

public static void main(String args[]) {

Box b1 = new Box();

// assign values to mybox1's instance variables

b1.width = 10;

b1.height = 20;

b1.depth = 15;

// display volume of box

b1.volume();

}

}

Page 7 Module-2 OOPS Through

JAVA

There are two important things to understand about returning values:

• The type of data returned by a method must be compatible with the return type specified by

the method. For example, if the return type of some method is boolean, you could not return

an integer.

• The variable receiving the value returned by a method (such as vol, in this case) must also be

compatible with the return type specified for the method.

Adding a Method That Takes Parameters:

Parameters allow a method to be generalized. That is, a parameterized method can operate

on a variety of data and/or be used in a number of slightly different situations.

class Box {

double width, height, depth;

// compute and return volume

double volume() {

return (width * height * depth);

}

// sets dimensions of box

void setDim(double w, double h, double d) {

width = w; height = h; depth = d;

}

}

class BoxDemo {

public static void main(String args[]) {

Box b1 = new Box();

Double vol;

b1.setDim(10, 20, 15); // initialize box

System.out.println("Volume is " + b1.volume());

// display volume of box

}

}

Output:

Volume is 3000.0

➢ The setDim() method is used to set the dimensions of each box.

For example, when mybox1.setDim(10, 20, 15); is executed, 10 is copied into parameter w,

20 is copied into h, and 15 is copied into d.

➢ Inside setDim() the values of w, h, and d are then assigned to width, height, and depth,

respectively.

It is important to keep the two terms parameter and argument straight.

A parameter is a variable defined by a method that receives a value when the method is called.

For example, setDim(double w, double h, double d) → where w, h, d are parameters

An argument is a value that is passed to a method when it is invoked.

For example, setDim(10, 20, 15);passes 10,20,30 as arguments.

Constructors:

It can be tedious to initialize all of the variables in a class each time an instance is created.

Automatic initialization of data members of a class is performed through the use of a constructor.

• A constructor initializes an object immediately upon creation.

• A Constructor has the same name as the class name.

• Constructor syntactically similar to a method.

Page 8 Module-2 OOPS Through

JAVA

• Constructor is automatically called when the object is created before the new operator

completes.

• Constructors have no return type, not even void. This is because the implicit return type of

a class’ constructor is the class type itself.

/* Here, Box uses a constructor to initialize the dimensions of a box. */

class Box {

double width, height, depth;

// This is the constructor for Box.

Box() {

System.out.println("Constructing Box");

width = 10; height = 10; depth = 10;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

class BoxDemo {

public static void main(String args[]) {

// declare, allocate, and initialize Box objects

Box b1 = new Box(); Box b2 = new Box();

double vol;

vol = b1.volume(); // get volume of first box

System.out.println("Volume is " + vol);

vol = b2.volume(); // get volume of second box

System.out.println("Volume is " + vol);

}

}

Output:

Constructing Box

Constructing Box

Volume is 1000.0

Volume is 1000.0

let’s re-examine the new operator. As you know, when you allocate an object, you use the

following general form:

class-var = new classname();

Now you can understand why the parentheses are needed after the class name. What is actually

happening is that the constructor for the class is being called. Thus, in the line

Box b1 = new Box();

new Box() is calling the Box() constructor. When you do not explicitly define a constructor for

a class, then Java creates a default constructor for the class.

The default constructor automatically initializes all instance variables to zero. The default

constructor is often sufficient for simple classes, but it usually won’t do for more sophisticated

ones. Once you define your own constructor, the default constructor is no longer used.

Page 9 Module-2 OOPS Through

JAVA

Parameterized Constructors:

The default constructor (Box()) in the preceding example does initialize a Box object. But

it is not very useful because all boxes have the same dimensions. What is needed is a way to

construct Box objects of various dimensions. The easy solution is to add parameters to the

constructor.

A constructor which takes parameters is called a parameterized constructor

class Box {

double width, height, depth;

// This is the constructor for Box.

 Box(double w, double h, double d)

 {

width = w; height = h; depth = d;

}

// compute and return volume

double volume()

{

return width * height * depth;

}

}

class BoxDemo {

public static void main(String args[])

 {

// declare, allocate, and initialize Box objects

 Box b1 = new Box(10, 20, 15);

Box b2 = new Box(3, 6, 9); double vol;

// get volume of first box vol = b1.volume();

System.out.println("Volume is " + vol);

// get volume of second box vol = b2.volume();

System.out.println("Volume is " + vol);

}

}

Output:

Volume is

3000.0

Volume is

162.0

Page 10 Module-2 OOPS Through

JAVA

Each object is initialized as specified in the parameters to its constructor.

For example, in the following line, Box b1 = new Box(10, 20, 15);

the values 10, 20, and 15 are passed to the Box() constructor when new creates the object. Thus,

b1’s copy of width, height, and depth will contain the values 10, 20, and 15, respectively.

this Keyword:

The this Keyword and Instance Variable Hiding

• The keyword ‘this’ is used inside any method to refer to the current object.

• That is, ‘this’ keyword is always a reference to the object on which the method was invoked.

• You can use this anywhere a reference to an object of the current class’ type is permitted.

• Whenever the formal parameters and data members of a class are similar, to differentiate data

members of a class from formal parameters, the data members of the class are preceded by

"this".

class Test {

int a,b;

Test(int a,int b) { //parameterized constructor

System.out.println(" In parameterized constructor");

this.a=a;

this.b=b;

System.out.println(“a= ”+a+” this.a= “+this.a);

this.a=this.a+10;

System.out.println(“a= ”+a+” this.a= “+this.a);

}

Output:

a= 100 this.a= 100

a= 100 this.a= 110

110

110

Garbage Collection

• Since objects are dynamically allocated by using the new operator, you might be wondering

how such objects are destroyed and their memory released for later reallocation.

• In some languages, such as C++, dynamically allocated objects must be manually released by

use of a delete operator.

• Java takes a different approach which handles deallocation automatically. The technique that

accomplishes this is called garbage collection.

• Garbage collection works like this: when no references to an object exist, that object is

void display() {

System.out.println(a);// Internally treated as this.a

System.out.println(this.a);

}

}

class ThisDemo {

public static void main(String a[]) {

Test t=new Test(100,200); t.display();

}

}

Page 11 Module-2 OOPS Through

JAVA

assumed to be no longer needed, and the memory occupied by the object can be reclaimed.

• Garbage collection only occurs sporadically (if at all) during the execution of your program.

It will not occur simply because one or more objects exist that are no longer used.

• Different Java run-time implementations will take varying approaches to garbage collection,

but for the most part, you should not have to think about it while writing your programs.

The finalize() Method

Sometimes an object will need to perform some action when it is destroyed. To do that Java

provides a mechanism called finalization. To add a finalizer to a class, simply define the finalize()

method. The Java run time calls that method whenever it is about to recycle an object of that class.

The finalize() method has this general form:

Here, the keyword protected is a specifier that prevents access to finalize() by code defined

outside its class. It is important to understand that finalize() is only called just prior to garbage

collection. It is not called when an object goes out-of-scope, for example. This means that you

cannot know when—or even if—finalize() will be executed.

Overloading Methods:

• In Java it is possible to define two or more methods within the same class that share the same

name, as long as their parameter declarations are different. This process is referred to as

method overloading.

• Method overloading is one of the ways that Java implements polymorphism.

• When an overloaded method is invoked, Java uses the type and/or number of arguments to

determine which version of the overloaded method to actually call. Thus, overloaded methods

must differ in the type and/or number of their parameters.

• While overloaded methods may have different return types, the return type alone is

insufficient to distinguish two versions of a method.

• When Java encounters a call to an overloaded method, it simply executes the version of the

method whose parameters match the arguments used in the call.

Here is a simple example that illustrates method overloading: Example: To illustrate the

concept of method overloading in java

protected void finalize() {

// finalization code here

}

Page 12 Module-2 OOPS Through

JAVA

In the above example test() is overloaded four times.

• The first version takes no parameters, the second takes one integer parameter, the third takes

two parameters; one integer and one character, and the fourth takes one character parameter

and also returns an integer.

• When an overloaded method is called, Java looks for a match between the arguments used to

call the method and the method’s parameters.

• In some cases, Java’s automatic type conversions can play a role. Java will employ its

automatic type conversions only if no exact match is found.

Overloading Constructors:

Constructor methods can also be overloaded in the same as how methods are overloaded.

/* Here, Box defines three constructors to initialize the dimensions of a box various ways.

class Box {

double width, height , depth;

// constructor used when all dimensions specified

Box(double w, double h, double d) {

width = w; height = h; depth = d;

}

Output:

Volume of mybox1 is

3000.0

Volume of mybox2 is

-1.0

Volume of mycube is

class Overload {

void test() {

System.out.println("TEST with out parameters");

}

void test(int a) {

System.out.println("parameters:"+a);

}

void test(int a,char ch){

System.out.println("parameters:"+a+"\t"+ch);

}

int test(char ch) {

System.out.println("TEST with return type and parameters :"+ch);

return 100;

}

}

class OverloadDemo {

public static void main(String args[]) {

Overload o=new Overload();

o.test();

o.test(10); o.test(10,'x');

int x=o.test('a'); System.out.println("X value is:"+x);

}

}

Page 13 Module-2 OOPS Through

JAVA

// constructor used when no dimensions specified

Box() {

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created

Box(double len) {

width = height = depth = len;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

class OverloadCons {

public static void main(String args[]) {

// create boxes using the various constructors

Box mybox1 = new Box(10, 20, 15);

Box mybox2 = new Box();

Box mycube = new Box(7); double vol;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

// get volume of second box vol = mybox2.volume();

System.out.println("Volume of mybox2 is " + vol);

// get volume of cube vol = mycube.volume();

System.out.println("Volume of mycube is " + vol);

}

}

343.0

Using Objects as Parameters:

Normally we pass simple types as parameters to methods. We can also pass objects to methods.

For example, consider the following program:

// Objects may be passed to methods.

class Test {

int a, b;

Test(int i, int j) {

a = i; b = j;

}

// return true if o is equal to the invoking object

boolean equals(Test o){

if(o.a == a && o.b == b)

return true;

else

return false;

Page 14 Module-2 OOPS Through

JAVA

class subclass-name extends superclass-name{

// body of class

}

This program generates the following output:

ob1 == ob2: true

ob1 == ob3: false

• The equals() method inside Test compares two objects for equality and returns the result.

That is, it compares the invoking object with the one that it is passed.

• If they contain the same values, then the method returns true. Otherwise, it returns false.

• Notice that the parameter o in equals() specifies Test as its type. Although Test is a class type

created by the program, it is used in just the same way as Java’s built-in types.

Inheritance

Inheritance is an important feature of object oriented programming. Inheritance is the

property of acquiring the properties of other class. A class that is inherited is called a superclass.

The class that does the inheriting is called a subclass. A subclass inherits members of superclass

and adds its own, unique elements.

The general form of a class declaration that inherits a superclass is shown here:

In java extends is the keyword used to inherit the other class. The class which inherits the

properties is called sub class and the class from which the properties are inherited is called the

super class.

Types of inheritance

• Single inheritance

• Multi-level inheritance

• Multiple inheritance

• Hybrid inheritance

• Heirarchy Inheritance

Single inheritance:

When a class inherits another class, it is known as a single inheritance. The following program

creates a superclass called A and a subclass called B.

}

}

class PassOb {

public static void main(String args[]) {

Test ob1 = new Test(100, 22);

Test ob2 = new Test(100, 22);

Test ob3 = new Test(-1, -1);

System.out.println("ob1 == ob2: " + ob1.equals(ob2));

System.out.println("ob1 == ob3: " + ob1.equals(ob3));

}

}

Page 15 Module-2 OOPS Through

JAVA

class A

 {

int i,j;

A()

{

int i=10,j=20;

}

void showij()

 {

System.out.println("i and j: " + i + " " + j);

}

}

class B extends A

{

int k;

B()

{

int i=100, j=200,k=300;

}

void showall()

{

System.out.println("i: " + i);

System.out.println("j: " + j);

System.out.println("k: " + k);

}

}

class Sample

 {

public static void main(String args[])

 {

A o1= new A();

B o2 = new B();

System.out.println("Contents of superOb: ");

o1.showij();

System.out.println("Contents of subOb: ");

o2.showall();

}

}

Page 16 Module-2 OOPS Through

JAVA

The subclass B includes all of the members of its superclass, A. This is why o2 can

access i and j and can call showij().

Member Access and Inheritance

Although a subclass includes all of the members of its superclass, it cannot access those

members of the superclass that have been declared as private. In a class hierarchy, private

members remain private to their class.

class A {

private int i;

int j;

A() {

i=10,j=20;

}

void showij() {

System.out.println("i and j: " + i + " " + j);

}

}

Class B extends A{

int k;

B() {

j=200,k=300;

}

void showjk() {

System.out.println("j: " + j);

System.out.println("k: " + k);

}

}

class Sample {

public static void main(String args[]) {

A o1= new A();

B o2 = new B();

System.out.println("Contents of superOb: ");

o1.showij();

System.out.println("Contents of subOb: ");

o2.showjk();

}

}

In the above program the data member j is inherited but i is not inherited as it is a private

member. A class member that has been declared as private will remain private to its class. It is not

accessible by any code outside its class, including subclasses.

Page 17 Module-2 OOPS Through

JAVA

super

super has two general forms.

• is used to call the superclass’ constructor.

• is used to access a member of the superclass that has been hidden by a member of a

subclass.

a. Using super to Call Superclass Constructors

A subclass can call a constructor method defined by its immediate superclass by use of the

following form of

super:

super(parameter-list);

Here, parameter-list specifies any parameters needed by the constructor in the superclass. super(

) must always be the first statement executed inside a subclass’ constructor.

Example

class A {

int x,y;

A(int p, int q) {

x=p;

y=q;

}

void showA() {

System.out.println("x:"+x+"Y:"+y);

}

}

Page 18 Module-2 OOPS Through

JAVA

class B extends A {

int m,n;

B(int p, int q,int r, int s) {

super(r,s);

M=p;

N=q;

}

void showB() {

System.out.println("m:"+m+"n:"+n);

}

}

class supex {

public static void main(String args[]) {

A a=new A(10,20);

System.out.println("USING SUPER CLASS");

a.showA();

B b=new B(100,200,300,400);

System.out.println("USING SUB CLASS"); b.showA();

b.showB();

}

}

In the above example super keyword is used to call the constructor in the super class.

Parameters can also be passed to the constructor by enclosing them with in parentheses.

A Second Use for super:

Super can also be used to refer to the superclass of the subclass in which it is used. This

usage has the following general form:

super.member

Here, member can be either a method or a data member. This second form of super is

most applicable to situations in which member names of a subclass hide members by the same

name in the superclass.

Example:

Class A { int x;

A() {

x=20;

}

void showA() {

System.out.println("x:"+x);

}

}

class B extends A {

int x;

B() {

super.x=100; x=200;

}

void showB() {

System.out.println("super.x:"+super.x+"x:"+x);

Page 19 Module-2 OOPS Through

JAVA

}

}

class supex2 {

public static void main(String args[]) {

B b=new B();

b.showB();

}

}

Although the instance variable x in B hides the x in A, super allows access to the x defined in

the superclass. As you will see, super can also be used to call methods that

are hidden by a subclass.

Creating a Multilevel inheritance

In multi-level inheritance a subclass is used as a super class of another class. For

example, given three classes called A, B, and C, C can be a subclass of B, which is a subclass

of A. When this type of situation occurs, each subclass inherits all of the traits found in all of its

super classes.

Example:

class A {

int x;

A() {

x=20;

}

void showA() {

System.out.println("x:"+x);

}

}

class B extends A {

int y;

B() {

y=30;

}

void showB() {

System.out.println("y:"+y);

}

}

class C extends B {

int z;

C() {

z=40;

}

void showC() {

System.out.println("z:"+z);

}

}

class multi{

public static void main(String args[]) {

Page 20 Module-2 OOPS Through

JAVA

C c=new C();

c.showA();

c.showB();

c.showC();

}

}

The subclass C inherits properties in the classes A and B. So it can access the methods

showA(), showB() and showC().

Order Constructor execution with inheritance

Constructors are called in order of derivation, from superclass to subclass. Further, since super()

must be the first statement executed in a subclass’ constructor, this order is the same whether or

not super() is used. If super() is not used, then the default or parameterless constructor of each

superclass will be executed.

Example

class A {

A() {

System.out.println("Inside A's constructor.");

}

}

class B extends A {

B() {

System.out.println("Inside B's constructor.");

}

}

class C extends B {

C() {

System.out.println("Inside C's constructor.");

}

}

class multicons {

public static void main(String args[]) {

C c = new C();

}

}

The output from this program is:

Inside A’s constructor Inside B’s constructor Inside C’s constructor Method Overriding

When a method in a subclass has the same name and type signature as a method in its superclass,

then the method in the subclass is said to override the method in the superclass. When an

overridden method is called from within a subclass, it will always refer to the version of that

method defined by the subclass. The version of the method defined by the superclass will be

hidden.

Example:

class A {

int i, j;

A(int a, int b) {

i = a;

Page 21 Module-2 OOPS Through

JAVA

j = b;

}

void show() {

System.out.println("i and j: " + i + " " + j);

}

}

class B extends A {

int k;

B(int a, int b, int c) {

super(a, b);

k = c;

}

void show() {

Super.show();

System.out.println("k: " + k);

}

}

class override {

public static void main(String args[]) {

B ob = new B(1, 2, 3);

ob.show();

}

}

With the call Ob.show(), the method in the subclass B is invoked. That is, the version of

show() inside B overrides the version declared in A. To access the superclass version of an

overridden function, use super. Note: overridden methods allow Java to support run-time

polymorphism.

Run time polymorphism using method overriding

Method overriding forms the basis for one of Java’s most powerful concepts: dynamic method

dispatch. Dynamic method dispatch is the mechanism by which a call to an overridden method is

resolved at run time, rather than compile time. This is how Java implements run-time

polymorphism.

Note: a superclass reference variable can refer to a subclass object.

Java uses this fact to resolve calls to overridden methods at run time. When an overridden method

is called through a superclass reference, Java determines which version of that method to execute

based upon the type of the object being referred to at the time the call occurs. Thus, this

determination is made at run time. When different types of objects are referred to, different

versions of an overridden method will be called.

Example:

class A {

int x;

A() {

x=20;

}

void show() {

System.out.println("x:"+x);

Page 22 Module-2 OOPS Through

JAVA

}

}

class B extends A {

int y;

B() {

y=30;

}

void show() {

System.out.println("y:"+y);

}

}

class C extends B {

int z;

C() {

z=40;

}

void show() {

System.out.println("z:"+z);

}

}

class multi {

public static void main(String args[]) { A o1=new A();

B o2=new B(); C o3=new C(); A o; o=o1;

o.show();//calls show in the class A o=o2;

o.show();//calls show in the class B o=o3;

o.show();//calls show in the class C

}

}

This program creates one superclass called A and two subclasses of it, called B and C.

Subclasses B and C override show() declared in A. Inside the main() method, objects of type A,

B, and C are declared. Also, a reference of type A, called o, is declared. The program then assigns

a reference to each type of object to o and uses that reference to invoke show().

Abstract Classes:

An abstract method is a method that is declared without an implementation (without braces and

followed by a semicolon). To declare an abstract method, use this general form:

Example :

abstract void draw();

The abstract method must be overridden by the subclass. If a class includes abstract methods, the

class itself must be declared abstract. Any class that contains one or more abstract methods must

also be declared abstract.

An abstract class is a class that is declared abstract. It may or may not include abstract

methods. Objects can not be created for Abstract classes. Abstract classes can be inherited by other

classes. To declare a class abstract, you simply use the abstract keyword in front of the class

keyword at the beginning of the class declaration.

abstract class classname {

abstract type name(parameter-list);

Page 23 Module-2 OOPS Through

JAVA

}

Any subclass of an abstract class must either implement all of the abstract methods in the

superclass, or be itself declared abstract.

Example:

abstract class A {

int x;

A() {

x=20;

}

abstract void show();

}

class B extends A {

int y;

B() {

y=30;

}

void show() {

System.out.println("x:"+x);

System.out.println("y:"+y);

}

}

class AbsEx {

public static void main(String args[]) {

B o=new B();

o.show();

}

}

It is not possible to create objects of the class A as it is an abstract class. The method

show() in the class A is declared as abstract and is overridden by the class B.

final with Inheritance:

The keyword final has three uses.

• It can be used to create a named constant.

• Can be used to disallow a method from being overridden

• Can be used to prevent a class from being inherited

a. Using final to create constant data members

A variable can be declared as final. If a variable is declared as final its contents cannot be

modified. A final variable must be initialized when it is declared.

For example:

final int FILE_NEW = 1; final int FILE_OPEN = 2; final int FILE_SAVE = 3; final int

FILE_SAVEAS = 4; final int FILE_QUIT = 5;

In subsequent parts of the program we can use FILE_OPEN, etc., as if they were Constants.

Variables declared as final do not occupy memory on a per-instance basis. Thus, a final variable

is essentially a constant. The keyword final can also be applied to methods, but its meaning is

substantially different than when it is applied to variables.

Page 24 Module-2 OOPS Through

JAVA

b. Using final to Prevent Overriding

To disallow a method from being overridden, use final as a modifier at the start of its

declaration. Methods declared as final cannot be overridden.

Example:

class A {

final void meth() {

System.out.println("This is a final method.");

}

}

In the class A meth() is declared as final, it cannot be overridden in subclasses.

c. Using final to Prevent Inheritance

A class can also be prevented from being inherited. Use final to do so. Declaring a class as

final implicitly declares all of its methods as final, too.

Note: It is illegal to declare a class as both abstract and final

Example

final class A {

// ...

}

String Handling

In Java, string is basically an object that represents sequence of char values. An array of characters

works same as Java string. For example:

1. char[] ch={'j','a','v','a','t','p','o','i','n','t'};

2. String s=new String(ch);

is same as:

String s="javatpoint";

Java String class provides a lot of methods to perform operations on strings such as compare(),

concat(), equals(), split(), length(), replace(), compareTo(), intern(), substring() etc.

Generally, String is a sequence of characters. But in Java, string is an object that represents

a sequence of characters. The java.lang.String class is used to create a string object.

There are two ways to create String object:

1. By string literal

2. By new keyword

1) String Literal

Java String literal is created by using double quotes. For Example:

String s="welcome";

Each time we create a string literal, the JVM checks the "string constant pool" first. If the string

already exists in the pool, a reference to the pooled instance is returned. If the string doesn't exist in

the pool, a new string instance is created and placed in the pool. For example:

1. String s1="Welcome";

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/array-in-java

Page 25 Module-2 OOPS Through

JAVA

2. String s2="Welcome";//It doesn't create a new instance

2) By new keyword

String s=new String("Welcome");//creates two objects and one reference variable

In such case, JVM will create a new string object in normal (non-pool) heap memory, and the literal

"Welcome" will be placed in the string constant pool. The variable s will refer to the object in a

heap (non-pool).

String Example.java

public class StringExample

{

public static void main(String args[])

{

String s1="java"; //creating string by Java string literal

char ch[]={'s','t','r','i','n','g','s'};

String s2=new String(ch);//converting char array to string

String s3=new String("example");//creating Java string by new keyword

System.out.println(s1);

System.out.println(s2);

System.out.println(s3);

}

}

Output:

Java

Strings

Examples

In Java, String objects are immutable. Immutable simply means unmodifiable or unchangeable.

Once String object is created its data or state can't be changed but a new String object is created.

 class Testimmutablestring{

 public static void main(String args[]){

 String s="Sachin";

 s.concat(" Tendulkar");//concat() method appends the string at the end

 System.out.println(s);//will print Sachin because strings are immutable objects

 }

}

Output: Sachin

class Testimmutablestring1{

 public static void main(String args[]){

 String s="Sachin";

 s=s.concat(" Tendulkar");

 System.out.println(s);

 }

}

Output: Sachin Tendulkar

https://www.javatpoint.com/jvm-java-virtual-machine

Page 26 Module-2 OOPS Through

JAVA

There are three ways to compare String in Java:

1. By Using equals() Method

2. By Using == Operator

3. By compareTo() Method

1) By Using equals() Method

The String class equals() method compares the original content of the string. It compares values of

string for equality. String class provides the following two methods:

o public boolean equals(Object another) compares this string to the specified object.

o public boolean equalsIgnoreCase(String another) compares this string to another string,

ignoring case.

Teststringcomparison1

class Teststringcomparison1{

 public static void main(String args[]){

 String s1="Sachin";

 String s2="Sachin";

 String s3=new String("Sachin");

 String s4="Saurav";

 System.out.println(s1.equals(s2));//true

 System.out.println(s1.equals(s3));//true

 System.out.println(s1.equals(s4));//false

 }

}

Output:

true

true

false

Teststringcomparison2

class Teststringcomparison2{

public static void main(String args[]){

 String s1="Sachin";

 String s2="SACHIN";

 System.out.println(s1.equals(s2));//false

 System.out.println(s1.equalsIgnoreCase(s2));//true

 }

}

Output:

Page 27 Module-2 OOPS Through

JAVA

 false

 true

2) By Using == operator

The == operator compares references not values.

class Teststringcomparison3{

 public static void main(String args[]){

 String s1="Sachin";

 String s2="Sachin";

 String s3=new String("Sachin");

 System.out.println(s1==s2);//true (because both refer to same instance)

 System.out.println(s1==s3);//false(because s3 refers to instance created in nonpool)

 }

 }

Output:

true

false

3) By Using compareTo() method

The String class compareTo() method compares values lexicographically and returns an integer

value that describes if first string is less than, equal to or greater than second string.

Suppose s1 and s2 are two String objects. If:

o s1 == s2 : The method returns 0.

o s1 > s2 : The method returns a positive value.

o s1 < s2 : The method returns a negative value.

Teststringcomparison

 class Teststringcomparison4{

 public static void main(String args[]){

 String s1="Sachin";

 String s2="Sachin";

 String s3="Ratan";

 System.out.println(s1.compareTo(s2));//0

 System.out.println(s1.compareTo(s3));//1(because s1>s3)

 System.out.println(s3.compareTo(s1));//-1(because s3 < s1)

 }

}

Output:

0

1

-1

Page 28 Module-2 OOPS Through

JAVA

String Concatenation

class TestStringConcatenation1

{

 public static void main(String args[])

{

 String s="Sachin"+" Tendulkar";

 System.out.println(s);//Sachin Tendulkar

 }

}

Output:

Sachin Tendulkar

Substring

public class TestSubstring

{

 public static void main(String args[])

{

 String s="SachinTendulkar";

 System.out.println("Original String: " + s);

 System.out.println("Substring starting from index 6: " +s.substring(6));//Tendulkar

 System.out.println("Substring starting from index 0 to 6: "+s.substring(0,6)); //Sachin

 }

}

Output:

Original String: SachinTendulkar

Substring starting from index 6: Tendulkar

Substring starting from index 0 to 6: Sachin

Java String length() Method

The String class length() method returns length of the specified String.

public class Stringoperation5

{

public static void main(String ar[])

{

String s="Sachin";

System.out.println(s.length());//6

}

}

Output:

6

Page 29 Module-2 OOPS Through

JAVA

Java String charAt() Method

The String class charAt() method returns a character at specified index.

public class Stringoperation4

{

public static void main(String ar[])

{

String s="Sachin";

System.out.println(s.charAt(0));//S

System.out.println(s.charAt(3));//h

}

}

Output:

S

h

Java String replace() Method

The String class replace() method replaces all occurrence of first sequence of character with second

sequence of character.

public class Stringoperation8

{

public static void main(String args[])

{

String s1="Java is a programming language. Java is a platform. Java is an Island.";

String replaceString=s1.replace("Java","Kava");//replaces all occurrences of "Java" to "Kava"

System.out.println(replaceString);

}

}

Output:

Kava is a programming language. Kava is a platform. Kava is an Island

Java StringBuffer Class:

Java StringBuffer class is used to create mutable (modifiable) String objects. The StringBuffer class

in Java is the same as String class except it is mutable i.e. it can be changed.

1) StringBuffer Class append() Method

The append() method concatenates the given argument with this String.

class StringBufferExample{

public static void main(String args[]){

StringBuffer sb=new StringBuffer("Hello ");

Page 30 Module-2 OOPS Through

JAVA

sb.append("Java");//now original string is changed

System.out.println(sb);//prints Hello Java

}

}

Output:

Hello Java

2) StringBuffer insert() Method

The insert() method inserts the given String with this string at the given position.

class StringBufferExample2{

public static void main(String args[]){

StringBuffer sb=new StringBuffer("Hello ");

sb.insert(1,"Java");//now original string is changed

System.out.println(sb);//prints HJavaello

}

}

Output:

Hjavaello

3) StringBuffer delete() Method

The delete() method of the StringBuffer class deletes the String from the specified beginIndex to

endIndex.

class StringBufferExample4{

public static void main(String args[]){

StringBuffer sb=new StringBuffer("Hello");

sb.delete(1,3);

System.out.println(sb);//prints Hlo

}

}

Output:

Hlo

4) StringBuffer reverse() Method

The reverse() method of the StringBuilder class reverses the current String.

class StringBufferExample5{

public static void main(String args[]){

StringBuffer sb=new StringBuffer("Hello");

sb.reverse();

System.out.println(sb);//prints olleH

}

}

Output:
olleh

Page 31 Module-2 OOPS Through

JAVA

Example

class str {

public static void main(String[] args) {

String str1=new String("welocme");

String str2=new String("java");

String str3=str1+str2;

System.out.println("STRING1:"+str3);

System.out.println("Length of the string is:"+str3.length());

System.out.println("s1==s2:"+str1.equals(str2));

System.out.println("chartAt(3):"+str3.charAt(3));

}

}

5) StringBuffer capacity() Method

The capacity() method of the StringBuffer class returns the current capacity of the buffer. The

default capacity of the buffer is 16. If the number of character increases from its current capacity, it

increases the capacity by (oldcapacity*2)+2. For example if your current capacity is 16, it will be

(16*2)+2=34.

class StringBufferExample6{

public static void main(String args[]){

StringBuffer sb=new StringBuffer();

System.out.println(sb.capacity());//default 16

sb.append("Hello");

System.out.println(sb.capacity());//now 16

sb.append("java is my favourite language");

System.out.println(sb.capacity());//now (16*2)+2=34 i.e (oldcapacity*2)+2

}

}

Output:

String vs StringBuffer

java provides the string buffer and string classes, and the string class is used to manipulate

character strings that cannot be changed. Simply stated objects of type string are read only and

immutable. The string buffer class is used to represent characters that can be modified.

StringBuilder:

Introduced by JDK 5, StringBuilder is a recent addition to Java’s string handling

capabilities. StringBuilder is identical to StringBuffer except for one important difference: it is

not synchronized, which means that it is not thread safe.

The advantage of StringBuilder is faster performance. However, in cases in which a

mutable string will be accessed by multiple threads, and no external synchronization is

employed, you must use StringBuffer rather than StringBuilder.

Page 32 Module-2 OOPS Through

JAVA

It has the following constructors.

Constructor Description

StringBuilder() creates an empty string Builder with the initial capacity of 16.

StringBuilder(String str) creates a string Builder with the specified string.

StringBuilder(int length) creates an empty string Builder with the specified capacity as

length.

It has the following methods.

Method Description

Append is used to append the specified string with this string. The append() method is

overloaded like append(char), append(boolean), append(int), append(float),

append(double) etc.

Insert is used to insert the specified string with this string at the specified position. The

insert() method is overloaded like insert(int, char), insert(int, boolean), insert(int,

int), insert(int, float), insert(int, double) etc.

Delete is used to delete the string from specified startIndex and endIndex.

Reverse is used to reverse the string.

Capacity is used to return the current capacity.

Length is used to return the length of the string i.e. total number of characters.

substring is used to return the substring from the specified beginIndex, beginIndex to

endIndex.

StringBuffer StringBuilder

StringBuffer is synchronized i.e. thread safe.

It means two threads can't call the methods of

StringBuffer simultaneously.

StringBuilder is non-synchronized i.e. not

thread safe. It means two threads can call the

methods of StringBuilder simultaneously.

StringBuffer is less efficient than

StringBuilder.

StringBuilder is more efficient than

StringBuffer.

StringTokenizer in Java:

The java.util.StringTokenizer class allows you to break a String into tokens. It is simple way to

break a String. It is a legacy class of Java.

StringTokenizer Class

import java.util.StringTokenizer;

public class Simple

{

public static void main(String args[])

{

StringTokenizer st = new StringTokenizer("my name is khan"," ");

while (st.hasMoreTokens())

{

 System.out.println(st.nextToken());

 }

 }

Page 33 Module-2 OOPS Through

JAVA

}

Output:

my

name

is

khan

nextToken(String delim) method

import java.util.*;

public class Test {

 public static void main(String[] args) {

 StringTokenizer st = new StringTokenizer("my,name,is,khan");

 // printing next token

 System.out.println("Next token is : " + st.nextToken(","));

 }

}

Output:

my

hasMoreTokens() method

import java.util.StringTokenizer;

public class StringTokenizer1

{

 /* Driver Code */

 public static void main(String args[])

 {

 /* StringTokenizer object */

 StringTokenizer st = new StringTokenizer("Demonstrating methods from StringTokenizer class",

" ");

 /* Checks if the String has any more tokens */

 while (st.hasMoreTokens())

 {

 System.out.println(st.nextToken());

 }

 }

}

Output:

Demonstrating

methods

from

StringTokenizer

class

Page 1 Module-3 OOPS Through

JAVA

Syllabus:

Module-3

Interfaces - Defining an interface, implementing interface, differences between classes and

interfaces, extending interfaces. Packages - Defining, creating, and accessing a package, access

control, exploring package-java.io (file handling).

 Exception handling - Concepts of Exception handling, benefits of exception handling,

 exception hierarchy, checked and unchecked exceptions, usage of try, catch, throw, throws

 and finally, built-in exceptions, creating own exception subclasses

Page 2 Module-3 OOPS Through

JAVA

Access-specifier interface name {

return-type method-name1(parameter-list);

return-type method-name2(parameter-list);

//..

return-type method-nameN(parameter-list);

type final-varname1 = value;

type final-varname2 = value;

// ...

type final-varnameN = value;

}

interface inter {

int a=10;

void show();

}

Interfaces:

In general, an interface specifies what operations must permit users to perform but does

not specify how the operations are performed. For example, remote serves as an interface

between television and user.

Software objects also communicate via interfaces. An interface is syntactically similar to

the class. An interface declaration begins with the keyword interface and contains constant data

members and method declarations. An interface may not specify any implementation details. All

methods declared in an interface are implicitly public abstract methods and all data members are

implicitly public, static and final.

Defining an Interface

An interface is defined much like a class. This is the general form of an interface:

Here, access is either public or none. name is the name of the interface. The methods

which are declared in the interface have no bodies. Variables declared inside of interface are

implicitly final and static. They must be initialized with a constant value.

Here is an example of an interface definition.

Use of interfaces

Interfaces can not be instantiated. They can be inherited to other interfaces or to other

classes. Using interfaces the concept of multiple inheritances can be achieved. Once an interface

is defined, any number of classes can implement an interface. Also, one class can implement any

number of interfaces. Each class that includes an interface must implement all of the methods

declared in the interface. The data members declared in the interface cannot be changed by the

implementing class.

Implementing Interfaces

Once an interface has been defined, one or more classes can implement that interface. To

implement an interface, include the implements clause in a class definition, and then create the

methods defined by the interface. The general form of a class that includes the implements clause

looks like this:

Here, access is either public or none. If a class implements more than one interface, the

interfaces are separated with a comma. The methods that implement an interface must be

access class classname [extends superclass] [implements interface [,interface...]] {

// class-body

}

Page 3 Module-3 OOPS Through

JAVA

class sample implements inter {

public void disp() {

System.out.println("Example interface");

System.out.println(a);

}

}

declared public. Also, the type signature of the implementing method must match exactly the

type signature specified in the interface definition.

Here is a small example class that implements the example interface shown earlier.

classes that implement interfaces can define additional members of their own. For example:

Accessing Implementations through Interface References

We can declare variables as object references that use an interface rather than a class

type. Any instance of any class that implements the declared interface can be referred to by such

a variable. The following example calls the disp() method via an interface reference variable:

Notice that variable i1 is declared to be of the interface type inter, yet it was assigned an

instance of the class sample. Although i1 can be used to access the disp() method, it cannot access

any other members of the sample class. An interface reference variable only has knowledge of

the methods declared by its interface declaration. Thus, i1 could not be used to access show()

since it is defined by sample Partial Implementations

If a class includes an interface but does not fully implement the methods defined by that

interface, then that class must be declared as abstract. For example:

Here, the class A does not implement disp() and must be declared as abstract. Any class

that inherits A must implement disp() or be declared abstract itself.

abstract class A implements inter {

int a, b;

void show() {

System.out.println(a + " " + b);

}

// ...

}

class demo {

public static void main(String args[]) {

inter i1 = new sample();

i1.disp(42);

}

}

class sample implements example {

public void disp() {

System.out.println("Example interface");

System.out.println(a);

}

void show() {

System.out.println(“Example method in class”);

}

}

Page 4 Module-3 OOPS Through

JAVA

interface A {

void meth1();

void meth2();

}

interface B extends A {

void meth3();

}

class Sample implements B {

public void meth1() {

System.out.println("Implement meth1().");

}

public void meth2() {

System.out.println("Implement meth2().");

}

public void meth3() {

System.out.println("Implement meth3().");

}

}

class demo {

public static void main(String arg[]) {

sample ob = new sample();

ob.meth1();

ob.meth2();

ob.meth3();

}

}

Interfaces Can Be Extended

interface can inherit another interface by use of the keyword extends. The syntax is the

same as for inheriting classes. When a class implements an interface that inherits another

interface, it must provide implementations for all methods defined within

the interface inheritance chain. Following is an example:

A is an interface which contains the declarations of meth1() and meth2(). B is an interface

which extends A and contains the declaration of meth3(). In the class Sample, which implements

interface B all the methods meth1(), meth2() and meth3() must be defined. Any class that

implements an interface must implement all methods defined by that interface, including any

that are inherited from other interfaces.

Page 5 Module-3 OOPS Through

JAVA

Packages:

A Java source-code file must have the following order:

1. a package declaration (if any),

2. import declarations (if any), then

3. class declarations.

Only one of the class declarations in a particular file can be public.

Packages

In java a package is a collection of classes. Groups of related classes are often packaged

as reusable components. Java packages are of two types:

• Predefined packages

• User defined packages

Benefits of packages:

• As applications become more complex, package helps to manage the complexity of

application components.

• Packages facilitate software reuse by enabling programs to import classes from other

packages.

• Packages provide a convention for unique class names, which helps prevent class-name

conflicts.

Predefined packages

Java provides a rich set of predefined classes that are grouped into categories of related

classes called packages. These packages are referred as the Java Application Programming

Interface (Java API), or the Java class library. These packages can be imported into programs

and reused.

Some packages in java API

java.lang: The Java Language Package contains classes and interfaces that are required by many

Java programs. This package is imported by the compiler into all programs, need not to use

import keyword.

java.io: The Java Input/Output Package contains classes and interfaces that enable programs to

input and output data.

java.util: The Java Utilities Package contains utility classes and interfaces that enable such

actions as date and time manipulations, random number processing (class Random), the storing

and processing of large amounts of data and the breaking of strings into smaller pieces called

tokens (class StringTokenizer).

java.applet: The Java Applet Package contains a class and several interfaces required to create

Java applets—programs that execute in Web browsers.

java.awt: The Java Abstract Window Toolkit Package contains the classes and interfaces

required to create and manipulate GUIs.

Defining a Package (user defined)

Include a package command as the first statement in a Java source file. Any classes

declared within that file will belong to the specified package. If the package statement is omitted,

the class names are put into the default package, which has no name. This is the general form of

the package statement:

package pkg;

Here, pkg is the name of the package. For example, the following statement creates a

package called pack1. package pack1;

• Java uses file system directories to store packages. The .class files for any classes that are

Page 6 Module-3 OOPS Through

JAVA

declared as part of pack1 must be stored in a directory called pack1.

• More than one file can include the same package statement. The package statement simply

specifies to which package the classes defined in a file belong.

• We can create a hierarchy of packages. To do so, simply separate each package name from

the one above it by use of a period.

• The general form of a multileveled package statement is shown here: package

pkg1[.pkg2[.pkg3]];

Finding Packages and CLASSPATH

For example, consider the following package specification. package pack1;

In order for a program to find pack1, one of two things must be true. Either the program is

executed from a directory immediately above pack1, or CLASSPATH must be set to include the

path to pack1.

A Short Package Example

package pack1;

class A {

int x; int y;

A() {

x=10; y=100;

}

void fun() {

System.out.println("x:"+x+"y:"+y);

}

}

class packex {

public static void main(String args[]) {

A o=new A();

o.fun();

}

}

Save this file as packex.java, in a directory called pack1. Next, compile the file. Make sure that

the resulting .class file is also in the pack1 directory. Then try executing the packex.java class,

using the following command line:

>java pack1.packex.java

Be in the directory above pack1 to execute this command. It cannot be executed by itself as it is

a part of the package pack1. That is packex must be qualified with its package name.

Access Protection:

Java provides many levels of protection to allow fine-grained control over the visibility

of variables and methods within classes, subclasses, and packages. Classes and packages are both

means of encapsulating and containing the name space and scope of variables and methods. Java

addresses four categories of visibility for class members:

■ Subclasses in the same package

■ Non-subclasses in the same package

■ Subclasses in different packages

■ Classes that are neither in the same package nor subclasses

The three access specifiers, private, public, and protected, provide a variety of ways to

Page 7 Module-3 OOPS Through

JAVA

produce the many levels of access required by these categories. Anything declared public can be

accessed from anywhere. Anything declared private cannot be seen outside of its class. When a

member does not have an explicit access specification (default), it is visible to subclasses as well

as to other classes in the same package. A protected member can be accessed outside the current

package, but only to the sub classes.

Access Specifier private No

modifier

Protected Public

Same class √ √ √ √

Same package sub class √ √ √

Same package non-subclass √ √ √

Different package subclass √ √

Different package non-subclass √

A class has only two possible access levels: default and public. When a class is declared

as public, it is accessible by any other code. If a class has default access, then it can only be

accessed by other code within its same package. Importing Packages

All of the standard classes in java are stored in some named package. Java includes the

import statement to bring certain classes, or entire packages, into visibility. Once imported, a

class can be referred to directly, using only its name. In a Java source file, import statements

occur immediately following the package statement (if it exists) and before any class definitions.

The general form of the import statement:

import pkg1[.pkg2].(classname|*);

Here, pkg1 is the name of a top-level package, and pkg2 is the name of a subordinate

package inside the outer package separated by a dot (.). Finally, specify either an explicit

classname or a star (*), which indicates that the Java compiler should import the entire package.

Example:

import java.util.Date;

import java.io.*;

All of the standard Java classes included with Java are stored in a package called java.

Java.lang package is implicitly imported by the compiler for all programs. When a package is

imported, only those items within the package declared as public will be available to non-

subclasses in the importing code.

Example: A program to import user defined package

A. java

package pack1;

public class A {

int x,y;

public A(){

x=10; y=100;

}

public void dispA(){

System.out.println("In class A");

Page 8 Module-3 OOPS Through

JAVA

System.out.println(“x:”+x+”y:”+y);

}

}

B. java

package pack1;

public class B {

int m,n;

public B(){

m=100; n=200;

}

public void dispB() {

System.out.println("In class B");

System.out.println(“m:”+m+”n:”+n);

}

}

demopack.java

import pack1.*;

class demopack {

public static void main(String args[]) {

A o1=new A();

B o2=new B(); O1.dispA();

o2.dispB();

}

}

Exploring package-java.io (file handling)

The java.io package contains nearly every class you might ever need to perform input and output

(I/O) in Java. All these streams represent an input source and an output destination. The stream in

the java.io package supports many data such as primitives, object, localized characters, etc.

Stream

A stream can be defined as a sequence of data. There are two kinds of Streams −

• InPutStream − The InputStream is used to read data from a source.

• OutPutStream − The OutputStream is used for writing data to a destination.

Java provides strong but flexible support for I/O related to files and networks but this tutorial

covers very basic functionality related to streams and I/O. We will see the most commonly used

examples one by one −

Byte Streams

Java byte streams are used to perform input and output of 8-bit bytes. Though there are many

classes related to byte streams but the most frequently used classes

are, FileInputStream and FileOutputStream. Following is an example which makes use of these

two classes to copy an input file into an output file −

Page 9 Module-3 OOPS Through

JAVA

Example

import java.io.*;

public class CopyFile {

 public static void main(String args[]) throws IOException {

 FileInputStream in = null;

 FileOutputStream out = null;

 try {

 in = new FileInputStream("input.txt");

 out = new FileOutputStream("output.txt");

 int c;

 while ((c = in.read()) != -1) {

 out.write(c);

 }

 }finally {

 if (in != null) {

 in.close();

 }

 if (out != null) {

 out.close();

 }

 }

 }

}

Now let's have a file input.txt with the following content −

This is test for copy file.

As a next step, compile the above program and execute it, which will result in creating output.txt

file with the same content as we have in input.txt. So let's put the above code in CopyFile.java file

and do the following −

$javac CopyFile.java

$java CopyFile

Character Streams

Java Byte streams are used to perform input and output of 8-bit bytes, whereas

Java Character streams are used to perform input and output for 16-bit unicode. Though there are

many classes related to character streams but the most frequently used classes

are, FileReader and FileWriter. Though internally FileReader uses FileInputStream and

FileWriter uses FileOutputStream but here the major difference is that FileReader reads two bytes

at a time and FileWriter writes two bytes at a time.

We can re-write the above example, which makes the use of these two classes to copy an input file

(having unicode characters) into an output file −

Example

import java.io.*;

public class CopyFile {

 public static void main(String args[]) throws IOException {

 FileReader in = null;

 FileWriter out = null;

Page 10 Module-3 OOPS Through

JAVA

 try {

 in = new FileReader("input.txt");

 out = new FileWriter("output.txt");

 int c;

 while ((c = in.read()) != -1) {

 out.write(c);

 }

 }finally {

 if (in != null) {

 in.close();

 }

 if (out != null) {

 out.close();

 }

 }

 }

}

Now let's have a file input.txt with the following content −

This is test for copy file.

As a next step, compile the above program and execute it, which will result in creating output.txt

file with the same content as we have in input.txt. So let's put the above code in CopyFile.java file

and do the following −

$javac CopyFile.java

$java CopyFile

Standard Streams

All the programming languages provide support for standard I/O where the user's program can

take input from a keyboard and then produce an output on the computer screen. If you are aware

of C or C++ programming languages, then you must be aware of three standard devices STDIN,

STDOUT and STDERR. Similarly, Java provides the following three standard streams −

• Standard Input − This is used to feed the data to user's program and usually a keyboard is

used as standard input stream and represented as System.in.

• Standard Output − This is used to output the data produced by the user's program and

usually a computer screen is used for standard output stream and represented

as System.out.

• Standard Error − This is used to output the error data produced by the user's program and

usually a computer screen is used for standard error stream and represented as System.err.

Following is a simple program, which creates InputStreamReader to read standard input stream

until the user types a "q" −

Example

import java.io.*;

public class ReadConsole {

 public static void main(String args[]) throws IOException {

 InputStreamReader cin = null;

 try {

 cin = new InputStreamReader(System.in);

Page 11 Module-3 OOPS Through

JAVA

 System.out.println("Enter characters, 'q' to quit.");

 char c;

 do {

 c = (char) cin.read();

 System.out.print(c);

 } while(c != 'q');

 }finally {

 if (cin != null) {

 cin.close();

 }

 }

 }

}

Let's keep the above code in ReadConsole.java file and try to compile and execute it as shown in

the following program. This program continues to read and output the same character until we

press 'q' −

$javac ReadConsole.java

$java ReadConsole

Enter characters, 'q' to quit.

1

1

e

e

q

q

Reading and Writing Files

As described earlier, a stream can be defined as a sequence of data. The InputStream is used to

read data from a source and the OutputStream is used for writing data to a destination.

Here is a hierarchy of classes to deal with Input and Output streams.

The two important streams are FileInputStream and FileOutputStream, which would be

discussed in this tutorial.

FileInputStream

This stream is used for reading data from the files. Objects can be created using the

keyword new and there are several types of constructors available.

Following constructor takes a file name as a string to create an input stream object to read the file

−

InputStream f = new FileInputStream("C:/java/hello");

Following constructor takes a file object to create an input stream object to read the file. First we

create a file object using File() method as follows −

File f = new File("C:/java/hello");

InputStream f = new FileInputStream(f);

Once you have InputStream object in hand, then there is a list of helper methods which can be

used to read to stream or to do other operations on the stream.

Sr.No. Method & Description

Page 12 Module-3 OOPS Through

JAVA

1
public void close() throws IOException{}

This method closes the file output stream. Releases any system resources associated with the file. Throws an

IOException.

2
protected void finalize()throws IOException {}

This method cleans up the connection to the file. Ensures that the close method of this file output stream is

called when there are no more references to this stream. Throws an IOException.

3
public int read(int r)throws IOException{}

This method reads the specified byte of data from the InputStream. Returns an int. Returns the next byte of

data and -1 will be returned if it's the end of the file.

4
public int read(byte[] r) throws IOException{}

This method reads r.length bytes from the input stream into an array. Returns the total number of bytes read. If

it is the end of the file, -1 will be returned.

5
public int available() throws IOException{}

Gives the number of bytes that can be read from this file input stream. Returns an int.

There are other important input streams available, for more detail you can refer to the following

links −

• ByteArrayInputStream

• DataInputStream

FileOutputStream

FileOutputStream is used to create a file and write data into it. The stream would create a file, if it

doesn't already exist, before opening it for output.

Here are two constructors which can be used to create a FileOutputStream object.

Following constructor takes a file name as a string to create an input stream object to write the file

−

OutputStream f = new FileOutputStream("C:/java/hello")

Following constructor takes a file object to create an output stream object to write the file. First,

we create a file object using File() method as follows −

File f = new File("C:/java/hello");

OutputStream f = new FileOutputStream(f);

Once you have OutputStream object in hand, then there is a list of helper methods, which can be

used to write to stream or to do other operations on the stream.

Sr.No. Method & Description

1
public void close() throws IOException{}

This method closes the file output stream. Releases any system resources associated with the file. Throws an

https://www.tutorialspoint.com/java/java_bytearrayinputstream.htm
https://www.tutorialspoint.com/java/java_datainputstream.htm

Page 13 Module-3 OOPS Through

JAVA

IOException.

2
protected void finalize()throws IOException {}

This method cleans up the connection to the file. Ensures that the close method of this file output stream is

called when there are no more references to this stream. Throws an IOException.

3
public void write(int w)throws IOException{}

This methods writes the specified byte to the output stream.

4
public void write(byte[] w)

Writes w.length bytes from the mentioned byte array to the OutputStream.

There are other important output streams available, for more detail you can refer to the following

links −

• ByteArrayOutputStream

• DataOutputStream

Example

Following is the example to demonstrate InputStream and OutputStream −

import java.io.*;

public class fileStreamTest {

 public static void main(String args[]) {

 try {

 byte bWrite [] = {11,21,3,40,5};

 OutputStream os = new FileOutputStream("test.txt");

 for(int x = 0; x < bWrite.length ; x++) {

 os.write(bWrite[x]); // writes the bytes

 }

 os.close();

 InputStream is = new FileInputStream("test.txt");

 int size = is.available();

 for(int i = 0; i < size; i++) {

 System.out.print((char)is.read() + " ");

 }

 is.close();

 } catch (IOException e) {

 System.out.print("Exception");

 }

 }

}

The above code would create file test.txt and would write given numbers in binary format. Same

would be the output on the stdout screen.

File Navigation and I/O

https://www.tutorialspoint.com/java/java_bytearrayoutputstream.htm
https://www.tutorialspoint.com/java/java_dataoutputstream.htm

Page 14 Module-3 OOPS Through

JAVA

There are several other classes that we would be going through to get to know the basics of File

Navigation and I/O.

• File Class

• FileReader Class

• FileWriter Class

Directories in Java

A directory is a File which can contain a list of other files and directories. You use File object to

create directories, to list down files available in a directory. For complete detail, check a list of all

the methods which you can call on File object and what are related to directories.

Creating Directories

There are two useful File utility methods, which can be used to create directories −

• The mkdir() method creates a directory, returning true on success and false on failure.

Failure indicates that the path specified in the File object already exists, or that the

directory cannot be created because the entire path does not exist yet.

• The mkdirs() method creates both a directory and all the parents of the directory.

Following example creates "/tmp/user/java/bin" directory −

Example

import java.io.File;

public class CreateDir {

 public static void main(String args[]) {

 String dirname = "/tmp/user/java/bin";

 File d = new File(dirname);

 // Create directory now.

 d.mkdirs();

 }

}

Compile and execute the above code to create "/tmp/user/java/bin".

Note − Java automatically takes care of path separators on UNIX and Windows as per

conventions. If you use a forward slash (/) on a Windows version of Java, the path will still

resolve correctly.

Listing Directories

You can use list() method provided by File object to list down all the files and directories

available in a directory as follows −

Example

import java.io.File;

public class ReadDir {

 public static void main(String[] args) {

 File file = null;

 String[] paths;

 try {

 // create new file object

https://www.tutorialspoint.com/java/java_file_class.htm
https://www.tutorialspoint.com/java/java_filereader_class.htm
https://www.tutorialspoint.com/java/java_filewriter_class.htm

Page 15 Module-3 OOPS Through

JAVA

 file = new File("/tmp");

 // array of files and directory

 paths = file.list();

 // for each name in the path array

 for(String path:paths) {

 // prints filename and directory name

 System.out.println(path);

 }

 } catch (Exception e) {

 // if any error occurs

 e.printStackTrace();

 }

 }

}

This will produce the following result based on the directories and files available in

your /tmp directory −

Output

test1.txt

test2.txt

ReadDir.java

ReadDir.class

Exception Handling:
Multithreading - Thread life cycle, creating threads, synchronizing threads, daemon threads.

Page 16 Module-3 OOPS Through

JAVA

try {

// block of code to monitor for errors

//code that may contain a run time error

}catch (ExceptionType1 exOb) {

// exception handler for ExceptionType1

}catch (ExceptionType2 exOb) {

// exception handler for ExceptionType2

}

// ...

finally {

// block of code to be executed before try block ends

}

Exception

Handling

Definition

An exception is an abnormal condition that arises in a code sequence at run time. In

other words, an exception is a run-time error. Java’s exception handling brings run-time error

management into the object-oriented world.

Advantages of exception handling:

• Exception handling enables you to create applications that can resolve (or handle)

exceptions.

• This feature enables programmers to write robust and fault-tolerant programs (i.e.,

programs that are able to deal with problems that may arise and continue executing).

Exception-Handling Fundamentals

When an exceptional condition arises, an object representing that exception is created

and thrown in the method that caused the error. At some point, the exception is caught and

processed.

Exceptions are of two types in java:

• User defined exceptions

• Predefined exceptions

Java exception handling is managed via five keywords: try, catch, throw, throws, and finally.

Program statements that are to be monitored for exceptions are contained within a try block.

• If an exception occurs within the try block, it is thrown.

• The exception can be caught (using catch) and handle it in some rational manner.

• To manually throw an exception, use the keyword throw.

• Any exception that is thrown out of a method must be specified as such by a throws

clause.

• Any code that absolutely must be executed before a method returns is put in a finally

block.

This is the general form of an exception-handling block:

Here, ExceptionType is the type of exception that has occurred. At least one catch block
or a finally block must immediately follow the try block. Each catch block specifies in

parentheses an exception parameter that identifies the exception type the handler can process.

When an exception occurs in a try block, the catch block that executes is the one whose type

matches the type of the exception that occurred

Page 17 Module-3 OOPS Through

JAVA

Exception Types

All exception types are subclasses of the built-in class Throwable. Immediately below

Throwable are two subclasses that partition exceptions into two distinct branches. One branch

is headed by Exception. This class is used for exceptional conditions that user programs should

catch. This is also the class that you will subclass to create your own custom exception types.

There is an important subclass of Exception, called RuntimeException. Exceptions of this

type are automatically defined for the programs that you write and include things such as

division by zero and invalid array indexing.

The other branch is topped by Error, which defines exceptions that are not expected to

be caught under normal circumstances by the program. Exceptions of type Error are used by

the Java run-time system to indicate errors having to do with the run-time environment, itself.

Stack overflow is an example of such an error.

Uncaught Exceptions

When an exception is not handled then what happens is explained using the run time

error divide by zero.

When the Java run-time system detects the attempt to divide by zero, it constructs a

new exception object and then throws this exception. The program terminates. Once an

exception has been thrown, it must be caught by an exception handler. In this example,

exception handler is not available. Any exception that is not caught by the program will

ultimately be processed by the default handler. The default handler displays a string describing

the exception.

Output:

java.lang.ArithmeticException: / by zero

at exc.main(exc.java:4)

Using try and catch
There are two benefits of handling an exception.

• First, it allows the programmer to fix the error.

• Second, it prevents the program from automatically terminating.

To handle a run-time error, simply enclose the code that is to be monitored inside a try

block. Immediately following the try block, include a catch clause that specifies the exception

type that is to be caught. ArithmeticException generated by the division-by-zero error:

import java.io.*;

import java.util.*;

import java.io.*;

import java.util.*;

class exc {

public static void main(String args[])throws IOException {

BufferedReader bf=new BufferedReader(new InputStreamReader(System.in));

int a=Integer.parseInt(bf.readLine());

b=Integer.parseInt(bf.readLine());

int c=a/b;

System.out.println(c);

}

}

Page 18 Module-3 OOPS Through

JAVA

• Once an exception is thrown, program control transfers out of the try block into the catch

block.

• Execution never “returns” to the try block from a catch.

• Once the catch statement has executed, program control continues with the next line in the

program following the entire try/catch mechanism.

• The statements that are protected by try must be surrounded by curly braces.

Displaying a Description of an Exception
Description of the exception can be displayed with a println() statement by simply passing the

exception as an argument. For example, the catch block in the following program can be

rewritten like this:

class exctry1 {

public static void main(String args[]) {

int a=10,b=0,c;

try {

c=a/b;

}catch(ArithmeticException e) {

System.out.println("Arithmetic- divide by zero exception"+e);

}

}

}

Output:

Exception: java.lang.ArithmeticException: / by zero

The Throwable Class and Its Subclasses

class exctry {

public static void main(String args[])throws IOException {

BufferedReader bf=new BufferedReader(new InputStreamReader(System.in));

int a=Integer.parseInt(bf.readLine());

int b=Integer.parseInt(bf.readLine()); int c;

try {

c=a/b;

}catch(ArithmeticException e) {

System.out.println("Arithmetic- divide by zero exception"); c=1;

}

System.out.println(c);

}

}

Page 19 Module-3 OOPS Through

JAVA

Java language requires exceptions derive from the Throwable class or one of its

subclasses. Throwable is a subclass of the Object class. Throwable has two direct descendants:

Error and Exception.

Errors

When a dynamic linking failure or some other "hard" failure in the virtual machine

occurs, the virtual machine throws an Error. Typical Java programs should not catch Errors.

Exceptions
Most programs throw and catch objects that derive from the Exception class. The

Exception class has many descendants defined in the Java packages. These descendants

indicate various types of exceptions that can occur. For example,

ArrayIndexOutOfBoundsException, ArithmeticException, IllegalAccessException,

NegativeArraySizeException etc;

Runtime Exceptions

One Exception subclass has special meaning in the Java language: RuntimeException.

The RuntimeException class represents exceptions that occur within the Java virtual machine

(during runtime). An example of a runtime exception is NullPointerException, which occurs

when a method tries to access a member of an object through a null reference. A

NullPointerException can occur anywhere a program tries to dereference a reference to an

object. The compiler allows runtime exceptions to go uncaught and unspecified.

Multiple catch Clauses
A try statement can be followed by more catch statements to handle more than one

exception that could be raised by a single piece of code. Each catch clause catches a different

type of exception. When an exception is thrown, each catch statement is inspected in order,

and the first one whose type matches that of the exception is executed. The others are bypassed,

and execution continues after the try/catch block.

Example: To demonstrate multiple catch statements.

class multicatch {

public static void main(String args[]) {

int a,b,c; a=Integer.parseInt(args[0]);

b=Integer.parseInt(args[1]);

Page 20 Module-3 OOPS Through

JAVA

int x[]={1,2,3,4};

try {

c=a/b;

System.out.println(“x[c]=”x[c]);

}catch(ArithmeticException e) {

System.out.println("Arithmetic- divide by zero exception");

}catch(ArrayIndexOutOfBoundsException e) {

System.out.println("ArrayIndexOut of bounds");

}

}

}

Here is the output generated by running it different ways:

C:\>java multicatch 10 5 X[c]=3

C:\>java multicatch 10 2

Array index oob: java.lang.ArrayIndexOutOfBoundsException C:\>java multicatch 10 0

Arithmetic- divide by zero exception

Note: When multiple catch statements are used, exception subclasses must come before any of

their superclasses. This is because a catch statement that uses a superclass will catch exceptions

of that type plus any of its subclasses. Thus, a subclass would never be reached if it came after

its superclass.

Nested try Statements

The try statement can be nested. That is, a try statement can be inside the block of

another try. Each time a try statement is entered, the context of that exception is pushed on the

stack. If an inner try statement does not have a catch handler for a particular exception, the

stack is unwound and the next try statement’s catch handlers are inspected for a match. This

continues until one of the catch statements succeeds, or until all of the nested try statements

are exhausted. If no catch statement matches, then the Java run-time system will handle the

exception. An example that uses nested try statements:

import java.io.*;

import java.util.*;

class nesttry {

public static void main(String args[]) {

int a,b,c;

a=Integer.parseInt(args[0]);

b=Integer.parseInt(args[1]);

int x[]={1,2,3,4};

try {

c=a/b;

try{

System.out.println(x[100]);

}catch(NullPointerException e) {

System.out.println("ArrayIndexOut of bounds");

}

}catch(ArithmeticException e) {

System.out.println("Arithmetic- divide by zero exception");

Page 21 Module-3 OOPS Through

JAVA

}

}

throw

}catch(ArrayIndexOutOfBoundsException e) {

System.out.println("ArrayIndexOut of bounds");

}

In general exceptions are thrown by Java run-time system. They can be handled in the

programs. Programmers can throw exceptions by using the throw statement. A throw statement

specifies an object to be thrown.

The general form of throw is:

throw ThrowableInstance;
The operand of a throw can be of any class derived from class Throwable. The flow of

execution stops immediately after the throw statement; any subsequent statements are not

executed. The nearest enclosing try block is inspected to see if it has a catch statement that

matches the type of the exception. If it does find a match, control is transferred to that statement.

If not, then the next enclosing try statement is inspected, and so on. If no matching catch is

found, then the default exception handler halts the program and prints the stack trace.

Here is a sample program that creates and throws an exception.

class throwex {

public static void main(String args[]) {

try {

throw new NullPointerException("thow example");

//System.out.println("after throw");

}catch(NullPointerException e) {

System.out.println("nullpointer exception"+e);

}

}

}

Rethrowing an exception

When a catch block receives an exception some times it can not process that exception or can

only partially process it. Then the exceptions can be rethrown. Rethrowing an exception defers

the exception handling to another catch block associated with an outer try statement. An

exception is rethrown by using the throw keyword, followed by a reference to the exception

object that was just caught. Note that exceptions cannot be rethrown from a finally block.

class rethrow {

static void fun() {

try {

throw new NullPointerException("demo");

}catch(NullPointerException e) {

System.out.println("Caught inside fun");

throw e; // rethrow the exception

}

}

Page 22 Module-3 OOPS Through

JAVA

public static void main(String args[]) {

try {

fun();

}

catch(NullPointerException e) {

System.out.println("Recaught: " + e);

}

}

}

This program gets two chances to deal with the same error. First, main() sets up an exception

context and then calls fun(). The fun() method then sets up another exception-handling context

and immediately throws a new instance of NullPointerException, which is caught on the next

line. The exception is then rethrown. Here is the resulting output:

Caught inside fun.

Recaught: java.lang.NullPointerException: demo

throws

If a method is capable of causing an exception that it does not handle, it must specify

this behavior so that callers of the method can guard themselves against that exception. This

can be accomplished by adding a throws clause in the method’s declaration. A throws clause

lists the types of exceptions that a method might throw. This is necessary for all exceptions,

except those of type Error or RuntimeException, or any of their subclasses. All other exceptions

that a method can throw must be declared in the throws clause. If

they are not, a compile-time error will result.

This is the general form of a method declaration that includes a throws clause:

type method-name(parameter-list) throws exception-list {

// body of method

}

Here, exception-list is a comma-separated list of the exceptions that a method can throw.

class ThrowsDemo {

static void throwOne() throws IllegalAccessException {

System.out.println("Inside throwOne.");

throw new IllegalAccessException("demo");

}

public static void main(String args[]) {

try {

throwOne();

}catch (IllegalAccessException e) {

System.out.println("Caught " + e);

}

}

}

finally

Page 23 Module-3 OOPS Through

JAVA

finally creates a block of code that will be executed after a try/catch block has

completed and before the code following the try/catch block. The finally block will execute

whether or not an exception is thrown. If an exception is thrown, the finally block will execute

even if no catch statement matches the exception. The finally clause is optional. However, each

try statement requires at least one catch or a finally clause.

Java’s Built-in Exceptions (checked and unchecked exceptions):

Java defines several exception classes in java.lang package. The most general of these

exceptions are subclasses of the standard type RuntimeException. Since java.lang is implicitly

imported into all Java programs, most exceptions derived from RuntimeException are

automatically available. Furthermore, they need not be included in any method’s throws list.

unchecked exceptions are the exceptions, the compiler does not check to see if a method

handles or throws these exceptions. Some of the unchecked exceptions defined in java.lang are

Exception Meaning

ArithmeticException ArithmeticException Arithmetic error, such as

divide-by-zero.

ArrayIndexOutOfBoundsException Array index is out-of-bounds.

ArrayStoreException Assignment to an array element of an incompatible

type.

NegativeArraySizeException Array created with a negative size

NullPointerException Invalid use of a null reference.

NumberFormatException Invalid conversion

Checked exceptions: exceptions defined by java.lang that must be included in a method’s

throws list if that method can generate any exception and does not handle it itself. These are

called checked exceptions. Following are some of the checked exceptions in java.lang.

Exception Meaning

ClassNotFoundException Class not found

IllegalAccessException Access to a class is denied.

NoSuchFieldException A requested field does not exist..

NoSuchMethodException A requested method does not exist

Creating Own Exception Subclasses
In addition to the predefined exception classes programmer can create his/her own

exceptions which are suitable for specific applications. These are called as user defined

exceptions. To accomplish this a class must be defined as a subclass of Exception class.

Example
import java.io.*;

import java.util.*;

class InvalidNumber extends Exception {

int k;

InvalidNumber(int k) {

this.k=k;

}

public String toString() {

Page 24 Module-3 OOPS Through

JAVA

return ("number must be < 100, you have entered"+k);

}

}

class myexc {

public static void main(String args[])throws IOException {

BufferedReader bf=new BufferedReader(new

InputStreamReader(System.in)); System.out.println("Enter a number");

int

a=Integer.parseInt(bf.readLine());

try {

if(a>100)

throw new InvalidNumber(a);

System.out.println("a value

is:"+a);

}catch(InvalidNumber e) {

System.out.println("caught:"+

e);

}

}

}

This example defines a subclass of Exception called InvalidNumber. This subclass is

quite simple: it has only a constructor plus an overloaded toString() method that displays the

value of the exception. The myexc class defines the main method that throws a

InvalidNumber object. The exception is thrown when user enters a value greater than 100 as

input.

Chained Exceptions
The chained exception feature allows you to associate another exception with an exception.

This second exception describes the cause of the first exception. For example, imagine a

situation in which a method throws an ArithmeticException because of an attempt to divide

by zero. However, the actual cause of the problem was that an I/O error occurred, which

caused the divisor to be set improperly. Although the method must certainly throw an

ArithmeticException, since that is the error that occurred, you might also want to let the

calling code know that the underlying cause was an I/O error. Chained exceptions let you

handle this, and any other situation in which layers of exceptions exist.

Throwable(Throwable causeExc)

Throwable(String msg, Throwable

causeExc)

Module-IV OOPS Through JAVA Page 1

Module-4
Multithreading – Differences between multithreading and Multitasking,Thread life cycle, creating threads,

synchronizing threads, daemon threads,thread groups.

Collectionclasses: –

ArrayList,LinkedList,HashSet,LinkedHashSet,TreeSet,PriorityQueue,ArrayDequeue,EnumSet

Multithreading vs Multitasking

Multi-threading Multitasking

It is a programming language concept in which a

program or process is divided into two or more

subprograms that are executed at the same time in

parallel.

It is an operating system concept in

which multiple tasks are performed

simultaneously.

It is highly efficient. It is less efficient than Multi-threading.

It supports execution of multiple parts of a single

program simultaneously.

It supports execution of multiple

programs simultaneously.

The processor has to switch between different

parts or threads of a program.

The processor has to switch between

different programs or processes.

A thread is the smallest unit in multi-threading. A program or process is the smallest unit

in multitasking.

It is cost effective in case of context switching. It is expensive in case of context

switching.

It helps in developing efficient programs. It helps in developing efficient operating

systems.

MultiThreading

Java provides built-in support for multithreaded programming. A thread is a path of execution in a program. A

multithreaded program contains two or more parts such threads that can run concurrently.

There are two distinct types of multitasking:

• process-based and

• thread based.

Process based multi-tasking

A process is a program that is executing. Thus, process-based multitasking is the feature that allows to

run two or more programs concurrently. For example, process-based multitasking enables to run the Java

compiler while using a text editor. In process-based multitasking, a program is the smallest unit of code that can

be dispatched by the scheduler. Processes are heavyweight tasks that require their own separate address spaces.

Interprocess communication is expensive and limited. Context switching from one process to another is also

costly.

Thread based multi-tasking

A thread is a path of execution in a program. This means that a single program can perform two or more

tasks simultaneously. For instance, a text editor can format text at the same time that it is printing, as long as

Module-IV OOPS Through JAVA Page 2

these two actions are being performed by two separate threads. Multitasking threads require less overhead than

multitasking processes. Threads, on the other hand, are lightweight. They share the same address space.

Interthread communication is inexpensive, and context switching from one thread to the next is low cost.

Advantages

Multithreading enables to write very efficient programs that make maximum use of the CPU, because idle time

can be kept to a minimum. Multithreading gain access to the idle time and put the CPU to good use.

Thread States (or) Thread Life cycle
The following diagram shows the life cycle of a Java Thread. Thread has following states: Start, Stop, Blocked,

Running, Runnable. These states can be changed to each other as shown in the diagram. Thread can sleep,

notify, resume, start, stop, suspend, yield and wait. These activities lead the thread from one state to move to

another one.

1. New state – After the creations of Thread instance the thread is in this state but before the start() method

invocation. At this point, the thread is considered not alive.

2. Runnable (Ready-to-run) state – A thread start its life from Runnable state. A thread first enters runnable

state after the invoking of start() method but a thread can return to this state after either running, waiting,

sleeping or coming back from blocked state also. On this state a thread is waiting for a turn on the

processor.

3. Running state – A thread is in running state that means the thread is currently executing.

4. Dead state – A thread can be considered dead when its run() method completes. If any thread comes on this

state that means it cannot ever run again.

5. Blocked - A thread can enter in this state because of waiting the resources that are hold by another thread.

The Thread Class and main thread:

Java’s multithreading system is built upon the Thread class. Thread encapsulates a thread of execution.

TheThread class defines several methods that help manage threads.

Method Meaning

getName () Obtain a thread’s name.

Module-IV OOPS Through JAVA Page 3

getPriority() Obtain a thread’s priority.

isAlive() Determine if a thread is still running.

Join() Wait for a thread to terminate.

run () Entry point for the thread.

sleep () Suspend a thread for a period of time.

start () Start a thread by calling its run method.

When a Java program starts up, one thread begins running immediately. This is usually called the main

thread of the program The main thread can be controlled through a Thread object. To do so, you must obtain a

reference to it by calling the method currentThread(). Its general form is shown here:

 Thread currentThread()

This method returns a reference to the thread in which it is called.

Example

// Controlling the main Thread.

class DemoThread {

public static void main(String args[]) {

Thread t = Thread.currentThread();

System.out.println("Current thread: " + t);

t.setName("My Thread");

System.out.println("After name change: " + t);

try {

for(int n = 5; n > 0; n--) {

System.out.println(n);

Thread.sleep(1000);

}

}catch (InterruptedException e) {

System.out.println("Main thread interrupted");

}

}

}

Sleep()

The sleep() method causes the thread from which it is called to suspend execution for the specified

period of milliseconds. The number of milliseconds to suspend is specified in milliseconds. This method may

throw an InterruptedException. Its general form is:

static void sleep(long milliseconds) throws InterruptedException

Creating a Thread

Java defines two ways to create a thread

• By implementing the Runnable interface.

• By extending the Thread class, itself.

a. Implementing Runnable

The easiest way to create a thread is to create a class that implements the Runnable. interface. Following

are the steps to create a thread by implementing Runnable interface.

1. Define a class that implements Runnable interface

2. Implement the method run().

3. Create a thread by passing an object of this runnable class to the Thread class constructor

4. Call the thread’s start() method to run the thread. Example:

import java.io.*;

class myThread implements Runnable {

public void run() {

Module-IV OOPS Through JAVA Page 4

System.out.println("Run method");

}

}

class runthreadex {

public static void main(String args[]) {

myThread m=new myThread();

Thread t=new Thread(m);

t.start();

}

}

Inside run(), you will define the code that constitutes the new thread. After creating a class that

implements Runnable, instantiate an object of that class. Now create an object of type Thread by passing the

above object as parameter to the Thread constructor. The start() executes a call to run(). The start() method is

shown here:

void start()

Here is an example that creates a new thread and starts it running:

// Create a second thread.

class NewThread implements Runnable {

Thread t;

NewThread() {

// Create a new, second thread

t = new Thread(this, "Demo Thread");

System.out.println("Child thread: " + t);

t.start(); // Start the thread

}

// This is the entry point for the second thread.

public void run() {

try {

for(int i = 5; i > 0; i--) {

System.out.println("Child Thread: " + i);

Thread.sleep(500);

}

} catch (InterruptedException e) {

System.out.println("Child interrupted.");

}

System.out.println("Exiting child thread.");

}

}

class ThreadDemo {

public static void main(String args[]) {

 new NewThread(); // create a new thread

try {

 for(int i = 5; i > 0; i--) {

System.out.println("Main Thread: " + i);

Thread.sleep(1000);

}

} catch (InterruptedEx ception e) {

System.out.println("Main thread interrupted.");

}

System.out.println("Main thread exiting.");

Module-IV OOPS Through JAVA Page 5

}

}

Inside NewThread’s constructor, a new Thread object is created by the following statement:

t = new Thread(this, "Demo Thread");

Passing this as the first argument indicates that you want the new thread to call the run() method on this object.

Next, start() is called, which starts the thread of execution beginning at the run() method. This causes the child

thread’s for loop to begin. After calling start(), NewThread’s constructor returns to main(). When the main

thread resumes, it enters its for loop. Both threads continue running, sharing the CPU, until their loops finish.

The output produced by this program is as follows:

Child thread: Thread[Demo Thread,5,main] Main Thread: 5

Child Thread: 5

Child Thread: 4

Main Thread: 4

Child Thread: 3

Child Thread: 2

Main Thread: 3

Child Thread: 1 Exiting child thread. Main Thread: 2

Main Thread: 1 Main thread exiting.

As mentioned earlier, in a multithreaded program, often the main thread must be the last thread to finish

running. In fact, for some older JVMs, if the main thread finishes before a child thread has completed, then the

Java run- time system may“hang.” The preceding program ensures that the main thread finishes last, because the

main thread sleeps for 1,000 milliseconds between iterations, but the child thread sleeps for only 500

milliseconds. This causes the child thread to terminate earlier than the main thread. Shortly, you will see a better

way to wait for a thread to finish.

Extending Thread

The second way to create a thread is to create a new class that extends Thread, and then to create an

instance of that class. The extending class must override the run() method, which is the entry point for the new

thread. It must also call start() to begin execution of the new thread. Here is the preceding program rewritten to

extend Thread:

// Create a second thread by extending Thread

class NewThread extends Thread {

NewThread() {

// Create a new, second thread

super("Demo Thread");

System.out.println("Child thread: " + this);

start(); // Start the thread

}

// This is the entry point for the second thread.

public void run() {

try {

for(int i = 5; i > 0; i--) {

System.out.println("Child Thread: " + i);

Thread.sleep(500);

}

} catch (InterruptedException e) {

System.out.println("Child interrupted.");

}

System.out.println("Exiting child thread.");

}

}

Module-IV OOPS Through JAVA Page 6

class ExtendThread {

public static void main(String args[]) {

new NewThread(); // create a new thread

try {

for(int i = 5; i > 0; i--) {

System.out.println("Main Thread: " + i);

Thread.sleep(1000);

}

} catch (InterruptedException e) {

System.out.println("Main thread interrupted.");

}

System.out.println("Main thread exiting.");

}

}

This program generates the same output as the preceding version. As you can see, the child thread is

created by instantiating an object of NewThread, which is derived from Thread.

Notice the call to super() inside NewThread. This invokes the following form of the Thread constructor:

public Thread(String threadName)

Here, threadName specifies the name of the thread. Choosing an Approach

At this point, you might be wondering why Java has two ways to create child threads, and which

approach is better. The answers to these questions turn on the same point. The Thread class defines several

methods that can be overridden by a derived class. Of these methods, the only one that must be overridden is

run(). This is, of course, the same method required when you implement Runnable. Many Java programmers

feel that classes should be extended only when they are being enhanced or modified in some way. So, if you

will not be overriding any of Thread’s other methods, it isprobably best simply to implement Runnable. This is

up to you, of course. However, throughout the rest of this chapter, we will create threads by using classes that

implement Runnable.

Creating Multiple Threads
So far, you have been using only two threads: the main thread and one child thread. However, your

program can spawn as many threads as it needs. For example, the following program creates three child threads:

// Create multiple threads.

class NewThread implements Runnable {

String name; // name of thread

Thread t;

NewThread(String threadname) {

name = threadname;

t = new Thread(this, name);

System.out.println("New thread: " + t);

t.start(); // Start the thread

}

 // This is the entry point for thread.

public void run() {

try {

for(int i = 5; i > 0; i--) {

System.out.println(name + ": " + i);

Thread.sleep(1000);

}

} catch (InterruptedException e) {

System.out.println(name + "Interrupted");

}

Module-IV OOPS Through JAVA Page 7

System.out.println(name + " exiting.");

}

}

class MultiThreadDemo {

public static void main(String args[]) {

new NewThread("One"); // start threads

new NewThread("Two");

new NewThread("Three");

try {

// wait for other threads to end

Thread.sleep(10000);

} catch (InterruptedException e) {

System.out.println("Main thread Interrupted");

}

System.out.println("Main thread exiting.");

}

}

The output from this program is shown here:

New thread: Thread[One,5,main] New thread: Thread[Two,5,main] New thread: Thread[Three,5,main] One: 5

Two: 5

Three: 5

One: 4

Two: 4

Three: 4

One: 3

Three: 3

Two: 3

One: 2

Three: 2

Two: 2

One: 1

Three: 1

Two: 1

One exiting. Two exiting. Three exiting.

Main thread exiting.

As you can see, once started, all three child threads share the CPU. Notice the call to sleep(10000) in

main(). This causes the main thread to sleep for ten seconds and ensures that it will finish last.

Synchronization
When two or more threads need access to a shared resource, they need some way to ensure that the resource will

be used by only one thread at a time. The process by which this is achieved is called synchronization. As you

will see, Java provides unique, language-level support for it.

Key to synchronization is the concept of the monitor (also called a semaphore).

A monitor is an object that is used as a mutually exclusive lock, or mutex. Only one thread can own a

monitor at a given time. When a thread acquires a lock, it is said to have entered the monitor. All other threads

attempting to enter the locked monitor will be suspended until the first thread exits the monitor. These other

threads are said to be waiting for the monitor. A thread that owns a monitor can reenter the same monitor if it so

desires.

If you have worked with synchronization when using other languages, such as C or C++, you know that it can

be a bit tricky to use. This is because most languages do not, themselves, support synchronization. Instead, to

synchronize threads, your programs need to utilize operating system primitives. Fortunately, because Java

implements synchronization through language elements, most of the complexity associated with

Module-IV OOPS Through JAVA Page 8

synchronization has been eliminated.

 You can synchronize your code in either of two ways. Both involve the use of the synchronized keyword, and

both are examined here.

Using Synchronized Methods

Synchronization is easy in Java, because all objects have their own implicit monitor associated with them. To

enter an object’s monitor, just call a method that has been modified with the synchronized keyword. While a

thread is inside a synchronized method, all other threads that try to call it (or any other synchronized method) on

the same instance have to wait. To exit the monitor and relinquish control of the object to the next waiting

thread, the owner of the monitor simply returns from the synchronized method.

To understand the need for synchronization, let’s begin with a simple example that does not use it—but should.

The following program has three simple classes. The first one, Callme, has a single method named call(). The

call() method takes a String parameter called msg. This method tries to print the msg string inside of square

brackets. The interesting thing to notice is that after call() prints the opening bracket and the msg string, it calls

Thread.sleep(1000), which pauses the current thread for one second.

The constructor of the next class, Caller, takes a reference to an instance of the Callme class and a String, which

are stored in target and msg, respectively. The constructor also creates a new thread that will call this object’s

run() method. Thethread is started immediately. The run() method of Caller calls the call() method on the

target instance of Callme, passing in the msg string. Finally, the Synch class starts by creating a single instance

of Callme, and three instances of Caller, each with a unique message string. The same instance of Callme is

passed to each Caller.

// This program is not synchronized.

class Callme {

void call(String msg) {

System.out.print("[" + msg);

try {

Thread.sleep(1000);

} catch(InterruptedException e) {

System.out.println("Interrupted");

}

System.out.println("]");

}

}

class Caller implements Runnable {

String msg;

Callme target;

Thread t;

public Caller(Callme targ, String s) {

target = targ;

msg = s;

t = new Thread(this);

t.start();

}

public void run() {

target.call(msg);

}

}

class Synch {

public static void main(String args[]) {

Callme target = new Callme();

Caller ob1 = new Caller(target, "Hello");

Module-IV OOPS Through JAVA Page 9

Caller ob2 = new Caller(target, "Synchronized");

 Caller ob3 = new Caller(target, "World");

// wait for threads to end

try {

ob1.t.join();

ob2.t.join();

ob3.t.join();

} catch(InterruptedException e) {

System.out.println("Interrupted");

}

}

}

Output:

Hello[Synchronized[World

]

]

As you can see, by calling sleep(), the call() method allows execution to switch to another thread. This results

in the mixed-up output of the three message strings. In this program, nothing exists to stop all three threads from

calling the same method, on the same object, at the same time. This is known as a race condition, because the

three threads are racing each other to complete the method. This example used sleep() to make the effects

repeatable and obvious. In most situations, a race condition is more subtle and less predictable, because you

can’t be sure when the context switch will occur. This can cause a program to run right one time and wrong the

next. To fix the preceding program, you must serialize access to call(). That is, you must restrict its access to

only one thread at a time. To do this, you simply need to precede call()’s definition with the keyword

synchronized, as shown here:

class Callme {

synchronized void call(String msg) {

...

 }

}

This prevents other threads from entering call() while another thread is using it. After synchronized has been

added to call(), the output of the program is as follows:

[Hello]

[Synchronized]

[World]

Any time that you have a method, or group of methods, that manipulates the internal state of an object in a

multithreaded situation, you should use the synchronized keyword to guard the state from race conditions.

Remember, once a thread enters any synchronized method on an instance, no other thread can enter any other

synchronized method on the same instance. However, non-synchronized methods on that instance will continue

to be callable.

The synchronized Statement:

While creating synchronized methods within classes that you create is an easy and effective means of achieving

synchronization, it will not work in all cases. To understand why, consider the following. Imagine that you want

to synchronize access to objects of a class that was not designed for multithreaded access. That is, the class does

not use

synchronized methods. Further, this class was not created by you, but by a third party, and you do not have

access to the source code. Thus, you can’t add synchronized to the appropriate methods within the class. How

can access to an object of this class be synchronized? Fortunately, the solution to this problem is quite easy:

You simply put calls to the methods defined by this class inside a synchronized block.

Module-IV OOPS Through JAVA Page 10

This is the general form of the synchronized statement:

synchronized(object) {

// statements to be synchronized

}

Here, object is a reference to the object being synchronized. A synchronized block ensures that a call to a

method that is a member of object occurs only after the current thread has successfully entered object’s monitor.

Here is an alternative version of the preceding example, using a synchronized block within the run() method:

// This program uses a synchronized block.

class Callme {

void call(String msg) {

 System.out.print("[" + msg);

try {

Thread.sleep(1000);

} catch (InterruptedException e) {

System.out.println("Interrupted");

}

System.out.println("]");

}

}

class Caller implements Runnable {

String msg;

Callme target;

Thread t;

public Caller(Callme targ, String s) {

target = targ;

msg = s;

t = new Thread(this);

t.start();

}

// synchronize calls to call()

public void run() {

synchronized(target) { // synchronized block

target.call(msg);

}

}

}

class Synch1 {

public static void main(String args[]) {

Callme target = new Callme();

Caller ob1 = new Caller(target, "Hello");

Caller ob2 = new Caller(target, "Synchronized");

Caller ob3 = new Caller(target, "World");

// wait for threads to end

try {

ob1.t.join();

ob2.t.join();

ob3.t.join();

} catch(InterruptedException e) {

System.out.println("Interrupted");

}

Module-IV OOPS Through JAVA Page 11

}

}

Here, the call() method is not modified by synchronized. Instead, the synchronized statement is used inside

Caller’s run() method. This causes the same correct output as the preceding example, because each thread waits

for the prior one to finish before proceeding.

Interthread Communication

The preceding examples unconditionally blocked other threads from asynchronous access to certain methods.

This use of the implicit monitors in Java objects is powerful, but you can achieve a more subtle level of control

through interprocess communication. As you will see, this is especially easy in Java.

Daemon Thread
It is a service provider thread that provides services to the user thread. Its life depends on the mercy of the

user threads i.e. when all the user threads dies, JVM terminates this thread automatically.

• We have gc, finalizer etc. as daemon threads in java.

• We have the following 2 methods on this.

1. public void setDaemon(boolean status) : is used to mark the current thread as daemon thread

2. public boolean isDaemon() : is used to check that current thread is daemon.

Daemon Thread Example Programs:
public class DaemonThread extends Thread{

 public void run(){

 if(Thread.currentThread().isDaemon())

 System.out.println("daemon thread work");

 else

 System.out.println("user thread work");

 }

 public static void main(String[] args){

 DaemonThread t1=new DaemonThread();

 DaemonThread t2=new DaemonThread();

 t1.setDaemon(true);//now t1 is daemon thread

 t1.start(); t2.start();

 }

}

public class DaemonThread extends Thread{

 public void run(){

 if(Thread.currentThread().isDaemon())

 System.out.println("daemon thread work");

 else

 System.out.println("user thread work");

 }

 public static void main(String[] args){

DaemonThread t1=new DaemonThread();

 t1.setDaemon(true);//now t1 is daemon thread

t1.start();

 }

}

Module-IV OOPS Through JAVA Page 12

Thread groups

Java provides a convenient way to group multiple threads in a single object. In such a way, we can suspend,

resume or interrupt a group of threads by a single method call.

Java thread group is implemented by java.lang.ThreadGroup class.

A ThreadGroup represents a set of threads. A thread group can also include the other thread group. The thread

group creates a tree in which every thread group except the initial thread group has a parent.

A thread is allowed to access information about its own thread group, but it cannot access the information about

its thread group's parent thread group or any other thread groups.

Constructors of ThreadGroup class

There are only two constructors of ThreadGroup class.

No. Constructor Description

1) ThreadGroup(String name) creates a thread group with given name.

2) ThreadGroup(ThreadGroup parent, String

name)

creates a thread group with a given parent group

and name.

Methods of ThreadGroup class

There are many methods in ThreadGroup class. A list of ThreadGroup methods is given below.

S.N. Modifier and

Type

Method Description

1) void checkAccess() This method determines if the currently running

thread has permission to modify the thread group.

2) int activeCount() This method returns an estimate of the number of

active threads in the thread group and its subgroups.

3) int activeGroupCount() This method returns an estimate of the number of

https://www.javatpoint.com/java-threadgroup-checkaccess-method
https://www.javatpoint.com/java-threadgroup-activecount-method
https://www.javatpoint.com/java-threadgroup-activegroupcount-method

Module-IV OOPS Through JAVA Page 13

active groups in the thread group and its subgroups.

4) void destroy() This method destroys the thread group and all of its

subgroups.

5) int enumerate(Thread[] list) This method copies into the specified array every

active thread in the thread group and its subgroups.

6) int getMaxPriority() This method returns the maximum priority of the

thread group.

7) String getName() This method returns the name of the thread group.

8) ThreadGroup getParent() This method returns the parent of the thread group.

9) void interrupt() This method interrupts all threads in the thread

group.

10) boolean isDaemon() This method tests if the thread group is a daemon

thread group.

11) void setDaemon(boolean

daemon)

This method changes the daemon status of the thread

group.

12) boolean isDestroyed() This method tests if this thread group has been

destroyed.

13) void list() This method prints information about the thread

group to the standard output.

14) boolean parentOf(ThreadGroup g This method tests if the thread group is either the

thread group argument or one of its ancestor thread

groups.

15) void suspend() This method is used to suspend all threads in the

thread group.

16) void resume() This method is used to resume all threads in the

thread group which was suspended using suspend()

method.

17) void setMaxPriority(int pri) This method sets the maximum priority of the group.

18) void stop() This method is used to stop all threads in the thread

group.

19) String toString() This method returns a string representation of the

Thread group.

Let's see a code to group multiple threads.

https://www.javatpoint.com/java-threadgroup-destroy-method
https://www.javatpoint.com/java-threadgroup-enumerate-method
https://www.javatpoint.com/java-threadgroup-getmaxpriority-method
https://www.javatpoint.com/java-threadgroup-getname-method
https://www.javatpoint.com/java-threadgroup-getparent-method
https://www.javatpoint.com/java-threadgroup-interrupt-method
https://www.javatpoint.com/java-threadgroup-isdaemon-method
https://www.javatpoint.com/java-threadgroup-setdaemon-method
https://www.javatpoint.com/java-threadgroup-setdaemon-method
https://www.javatpoint.com/java-threadgroup-isdestroyed-method
https://www.javatpoint.com/java-threadgroup-list-method
https://www.javatpoint.com/java-threadgroup-parentof-method
https://www.javatpoint.com/java-threadgroup-suspend-method
https://www.javatpoint.com/java-threadgroup-resume-method
https://www.javatpoint.com/java-threadgroup-setmaxpriority-method
https://www.javatpoint.com/java-threadgroup-stop-method
https://www.javatpoint.com/java-threadgroup-tostring-method

Module-IV OOPS Through JAVA Page 14

1. ThreadGroup tg1 = new ThreadGroup("Group A");

2. Thread t1 = new Thread(tg1,new MyRunnable(),"one");

3. Thread t2 = new Thread(tg1,new MyRunnable(),"two");

4. Thread t3 = new Thread(tg1,new MyRunnable(),"three");

Now all 3 threads belong to one group. Here, tg1 is the thread group name, MyRunnable is the class that

implements Runnable interface and "one", "two" and "three" are the thread names.

Now we can interrupt all threads by a single line of code only.

1. Thread.currentThread().getThreadGroup().interrupt();

ThreadGroup Example

File: ThreadGroupDemo.java

public class ThreadGroupDemo implements Runnable{

 public void run() {

 System.out.println(Thread.currentThread().getName());

 }

 public static void main(String[] args) {

 ThreadGroupDemo runnable = new ThreadGroupDemo();

 ThreadGroup tg1 = new ThreadGroup("Parent ThreadGroup");

 Thread t1 = new Thread(tg1, runnable,"one");

 t1.start();

 Thread t2 = new Thread(tg1, runnable,"two");

 t2.start();

 Thread t3 = new Thread(tg1, runnable,"three");

 t3.start();

 System.out.println("Thread Group Name: "+tg1.getName());

 tg1.list();

 }

 }

Output:

one

Module-IV OOPS Through JAVA Page 15

two

three

Thread Group Name: Parent ThreadGroup

java.lang.ThreadGroup[name=Parent ThreadGroup,maxpri=10]

ArrayList

The ArrayList class implements the List interface. It uses a dynamic array to store the duplicate element of

different data types. The ArrayList class maintains the insertion order and is non-synchronized. The elements

stored in the ArrayList class can be randomly accessed. Consider the following example.

import java.util.*;

class TestJavaCollection1{

public static void main(String args[]){

ArrayList<String> list=new ArrayList<String>();//Creating arraylist

list.add("Ravi");//Adding object in arraylist

list.add("Vijay");

list.add("Ravi");

list.add("Ajay");

//Traversing list through Iterator

Iterator itr=list.iterator();

while(itr.hasNext()){

System.out.println(itr.next());

}

}

}

Output:

Ravi

Vijay

Ravi

Ajay

Aja

LinkedList

LinkedList implements the Collection interface. It uses a doubly linked list internally to store the elements. It

can store the duplicate elements. It maintains the insertion order and is not synchronized. In LinkedList, the

manipulation is fast because no shifting is required.

Consider the following example.

import java.util.*;

public class TestJavaCollection2{

Module-IV OOPS Through JAVA Page 16

public static void main(String args[]){

LinkedList<String> al=new LinkedList<String>();

al.add("Ravi");

al.add("Vijay");

al.add("Ravi");

al.add("Ajay");

Iterator<String> itr=al.iterator();

while(itr.hasNext()){

System.out.println(itr.next());

}

}

}

Output:

Ravi

Vijay

Ravi

Ajay

HashSet

HashSet class implements Set Interface. It represents the collection that uses a hash table for storage. Hashing is

used to store the elements in the HashSet. It contains unique items.

Consider the following example.

import java.util.*;

public class TestJavaCollection7{

public static void main(String args[]){

//Creating HashSet and adding elements

HashSet<String> set=new HashSet<String>();

set.add("Ravi");

set.add("Vijay");

set.add("Ravi");

set.add("Ajay");

//Traversing elements

Iterator<String> itr=set.iterator();

while(itr.hasNext()){

System.out.println(itr.next());

}

}

}

Output:

Vijay

Ravi

Ajay

Module-IV OOPS Through JAVA Page 17

LinkedHashSet

LinkedHashSet class represents the LinkedList implementation of Set Interface. It extends the HashSet class and

implements Set interface. Like HashSet, It also contains unique elements. It maintains the insertion order and

permits null elements.

Consider the following example.

import java.util.*;

public class TestJavaCollection8{

public static void main(String args[]){

LinkedHashSet<String> set=new LinkedHashSet<String>();

set.add("Ravi");

set.add("Vijay");

set.add("Ravi");

set.add("Ajay");

Iterator<String> itr=set.iterator();

while(itr.hasNext()){

System.out.println(itr.next());

}

}

}

Output:

Ravi

Vijay

Ajay

TreeSet

Java TreeSet class implements the Set interface that uses a tree for storage. Like HashSet, TreeSet also contains

unique elements. However, the access and retrieval time of TreeSet is quite fast. The elements in TreeSet stored

in ascending order.

Consider the following example:

import java.util.*;

public class TestJavaCollection9{

public static void main(String args[]){

//Creating and adding elements

TreeSet<String> set=new TreeSet<String>();

set.add("Ravi");

set.add("Vijay");

set.add("Ravi");

set.add("Ajay");

//traversing elements

Iterator<String> itr=set.iterator();

while(itr.hasNext()){

System.out.println(itr.next());

Module-IV OOPS Through JAVA Page 18

}

}

}

Output

Ajay

Ravi

Vijay

PriorityQueue

The PriorityQueue class implements the Queue interface. It holds the elements or objects which are to be

processed by their priorities. PriorityQueue doesn't allow null values to be stored in the queue.

Consider the following example.

import java.util.*;

public class TestJavaCollection5{

public static void main(String args[]){

PriorityQueue<String> queue=new PriorityQueue<String>();

queue.add("Amit Sharma");

queue.add("Vijay Raj");

queue.add("JaiShankar");

queue.add("Raj");

System.out.println("head:"+queue.element());

System.out.println("head:"+queue.peek());

System.out.println("iterating the queue elements:");

Iterator itr=queue.iterator();

while(itr.hasNext()){

System.out.println(itr.next());

}

queue.remove();

queue.poll();

System.out.println("after removing two elements:");

Iterator<String> itr2=queue.iterator();

while(itr2.hasNext()){

System.out.println(itr2.next());

}

}

}

Output:

head:Amit Sharma

head:Amit Sharma

iterating the queue elements:
Amit Sharma

Raj

JaiShankar
Vijay Raj

Module-IV OOPS Through JAVA Page 19

after removing two elements:

Raj

Vijay Raj

Deque Interface

Deque interface extends the Queue interface. In Deque, we can remove and add the elements from both the side.

Deque stands for a double-ended queue which enables us to perform the operations at both the ends.

Deque can be instantiated as:

Deque d = new ArrayDeque();

ArrayDeque

ArrayDeque class implements the Deque interface. It facilitates us to use the Deque. Unlike queue, we can add

or delete the elements from both the ends.

ArrayDeque is faster than ArrayList and Stack and has no capacity restrictions.

Consider the following example.

import java.util.*;

public class TestJavaCollection6{

public static void main(String[] args) {

//Creating Deque and adding elements

Deque<String> deque = new ArrayDeque<String>();

deque.add("Gautam");

deque.add("Karan");

deque.add("Ajay");

//Traversing elements

for (String str : deque) {

System.out.println(str);

}

}

}

Output:
Gautam

Karan

Ajay

EnumSet

Java EnumSet class is the specialized Set implementation for use with enum types. It inherits

AbstractSet class and implements the Set interface.

EnumSet class declaration

Let's see the declaration for java.util.EnumSet class.

Module-IV OOPS Through JAVA Page 20

public abstract class EnumSet<E extends Enum<E>> extends AbstractSet<E> implements Clon

eable, Serializable

Methods of Java EnumSet class

Method Description

static <E extends Enum<E>> EnumSet<E>

allOf(Class<E> elementType)

It is used to create an enum set containing all

of the elements in the specified element type.

static <E extends Enum<E>> EnumSet<E>

copyOf(Collection<E> c)

It is used to create an enum set initialized

from the specified collection.

static <E extends Enum<E>> EnumSet<E>

noneOf(Class<E> elementType)

It is used to create an empty enum set with

the specified element type.

static <E extends Enum<E>> EnumSet<E>

of(E e)

It is used to create an enum set initially

containing the specified element.

static <E extends Enum<E>> EnumSet<E>

range(E from, E to)

It is used to create an enum set initially

containing the specified elements.

EnumSet<E> clone() It is used to return a copy of this set.

Java EnumSet Example

import java.util.*;

enum days {

 SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY

}

public class EnumSetExample {

 public static void main(String[] args) {

 Set<days> set = EnumSet.of(days.TUESDAY, days.WEDNESDAY);

 // Traversing elements

 Iterator<days> iter = set.iterator();

 while (iter.hasNext())

Module-IV OOPS Through JAVA Page 21

 System.out.println(iter.next());

 }

}

Output:
TUESDAY

WEDNESDAY

Java EnumSet Example: allOf() and noneOf()

import java.util.*;

enum days {

 SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY

}

public class EnumSetExample {

 public static void main(String[] args) {

 Set<days> set1 = EnumSet.allOf(days.class);

 System.out.println("Week Days:"+set1);

 Set<days> set2 = EnumSet.noneOf(days.class);

 System.out.println("Week Days:"+set2);

 }

}

Output:

Week Days:[SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY]

Week Days:[]

JAVA PROGRAMMING

UNIT-5

Event Handling

Event and Listener (Java Event Handling)

Changing the state of an object is known as an event. For example, click on button, dragging

mouse etc. The java.awt.event package provides many event classes and Listener interfaces for

event handling.

Types of Event

The events can be broadly classified into two categories:

 Foreground Events - Those events which require the direct interaction of user.They are

generated as consequences of a person interacting with the graphical components in

Graphical User Interface. For example, clicking on a button, moving the mouse, entering

a character through keyboard,selecting an item from list, scrolling the page etc.

Background Events - Those events that require the interaction of end user are known as
background events. Operating system interrupts, hardware or software failure, timer

expires, an operation completion are the example of background events.

Event Handling

Event Handling is the mechanism that controls the event and decides what should happen if an

event occurs. This mechanism have the code which is known as event handler that is executed

when an event occurs. Java Uses the Delegation Event Model to handle the events. This model

defines the standard mechanism to generate and handle the events.Let's have a brief introduction

to this model.

The Delegation Event Model has the following key participants namely:

 Source - The source is an object on which event occurs. Source is responsible for

providing information of the occurred event to it's handler. Java provide as with classes

for source object.

 Listener - It is also known as event handler. Listener is responsible for generating

response to an event. From java implementation point of view the listener is also an

object. Listener waits until it receives an event. Once the event is received , the listener

process the event an then returns.

Event classes and Listener interfaces:

JAVA PROGRAMMING

Event Classes Listener Interfaces

ActionEvent ActionListener

MouseEvent MouseListener and MouseMotionListener

MouseWheelEvent MouseWheelListener

KeyEvent KeyListener

ItemEvent ItemListener

TextEvent TextListener

AdjustmentEvent AdjustmentListener

WindowEvent WindowListener

ComponentEvent ComponentListener

ContainerEvent ContainerListener

FocusEvent FocusListener

Steps to perform Event Handling

Following steps are required to perform event handling:

1. Implement the Listener interface and overrides its methods

2. Register the component with the Listener

For registering the component with the Listener, many classes provide the registration methods.

For example:

o Button

o public void addActionListener(ActionListener a){}

o MenuItem

o public void addActionListener(ActionListener a){}

o TextField

o public void addActionListener(ActionListener a){}

o public void addTextListener(TextListener a){}

o TextArea

o public void addTextListener(TextListener a){}

o Checkbox

o public void addItemListener(ItemListener a){}

o Choice

JAVA PROGRAMMING

o public void addItemListener(ItemListener a){}

o List

o public void addActionListener(ActionListener a){}

o public void addItemListener(ItemListener a){}

EventHandling Codes:

We can put the event handling code into one of the following places:

1. Same class

2. Other class

3. Annonymous class

Example of event handling within class:

import java.awt.*;

import java.awt.event.*;

class AEvent extends Frame implements ActionListener{

TextField tf;

AEvent(){

tf=new TextField();

tf.setBounds(60,50,170,20);

Button b=new Button("click me");

b.setBounds(100,120,80,30);

b.addActionListener(this);

add(b);add(tf);

setSize(300,300);

setLayout(null);

setVisible(true);

}

public void actionPerformed(ActionEvent e){

tf.setText("Welcome");

}

public static void main(String args[]){

new AEvent();

} }

public void setBounds(int xaxis, int yaxis, int width, int height); have been used in the

above example that sets the position of the component it may be button, textfield etc.

Java event handling by implementing ActionListener

import java.awt.*;

import java.awt.event.*;

class AEvent extends Frame implements ActionListener{

JAVA PROGRAMMING

TextField tf;

AEvent(){

//create components

tf=new TextField();

tf.setBounds(60,50,170,20);

Button b=new Button("click me");

b.setBounds(100,120,80,30);

//register listener

b.addActionListener(this);//passing current instance

//add components and set size, layout and visibility

add(b);add(tf);

setSize(300,300);

setLayout(null);

setVisible(true);

}

public void actionPerformed(ActionEvent e){

tf.setText("Welcome");

}

public static void main(String args[]){

new AEvent();

}}

Java MouseListener Interface

The Java MouseListener is notified whenever you change the state of mouse. It is notified against

MouseEvent. The MouseListener interface is found in java.awt.event package. It has five

methods.

Methods of MouseListener interface

The signature of 5 methods found in MouseListener interface are given below:

1. public abstract void mouseClicked(MouseEvent e);

2. public abstract void mouseEntered(MouseEvent e);

3. public abstract void mouseExited(MouseEvent e);

4. public abstract void mousePressed(MouseEvent e);

5. public abstract void mouseReleased(MouseEvent e);

Java MouseListener Example

import java.awt.*;

import java.awt.event.*;

public class MouseListenerExample extends Frame implements MouseListener{

Label l;

MouseListenerExample(){

addMouseListener(this);

l=new Label();

l.setBounds(20,50,100,20);

add(l);

setSize(300,300);

setLayout(null);

setVisible(true);

JAVA PROGRAMMING

}

public void mouseClicked(MouseEvent e) {

l.setText("Mouse Clicked");

}

public void mouseEntered(MouseEvent e) {

l.setText("Mouse Entered");

}

public void mouseExited(MouseEvent e) {

l.setText("Mouse Exited");

}

public void mousePressed(MouseEvent e) {

l.setText("Mouse Pressed");

}

public void mouseReleased(MouseEvent e) {

l.setText("Mouse Released");

}

public static void main(String[] args) {

new MouseListenerExample();

}}

Java KeyListener Interface

The Java KeyListener is notified whenever you change the state of key. It is notified against

KeyEvent. The KeyListener interface is found in java.awt.event package. It has three methods.

Methods of KeyListener interface

The signature of 3 methods found in KeyListener interface are given below:

1. public abstract void keyPressed(KeyEvent e);

2. public abstract void keyReleased(KeyEvent e);

3. public abstract void keyTyped(KeyEvent e);

Java KeyListener Example

import java.awt.*;

import java.awt.event.*;

public class KeyListenerExample extends Frame implements KeyListener{

Label l;

TextArea area;

KeyListenerExample(){

l=new Label();

l.setBounds(20,50,100,20);

area=new TextArea();

area.setBounds(20,80,300, 300);

area.addKeyListener(this);

add(l);add(area);

setSize(400,400);

setLayout(null);

setVisible(true);

JAVA PROGRAMMING

}

public void keyPressed(KeyEvent e) {

l.setText("Key Pressed");

}

public void keyReleased(KeyEvent e) {

l.setText("Key Released");

}

public void keyTyped(KeyEvent e) {

l.setText("Key Typed");

}

public static void main(String[] args) {

new KeyListenerExample(); } }

Java Adapter Classes

Java adapter classes provide the default implementation of listener interfaces. If you inherit the

adapter class, you will not be forced to provide the implementation of all the methods of listener

interfaces. So it saves code.

java.awt.event Adapter classes

Adapter class Listener interface

WindowAdapter

WindowListener

KeyAdapter

KeyListener

MouseAdapter

MouseListener

MouseMotionAdapter

MouseMotionListener

FocusAdapter

FocusListener

ComponentAdapter

ComponentListener

ContainerAdapter

ContainerListener

HierarchyBoundsAdapter

HierarchyBoundsListener

Java WindowAdapter Example

1. import java.awt.*;

import java.awt.event.*;

public class AdapterExample{

JAVA PROGRAMMING

Frame f;

AdapterExample(){

f=new Frame("Window Adapter");

f.addWindowListener(new WindowAdapter(){

public void windowClosing(WindowEvent e) {

f.dispose(); } });

f.setSize(400,400);

f.setLayout(null);

f.setVisible(true);

}

public static void main(String[] args) {

new AdapterExample();

} }

JAVA PROGRAMMING

GUI Programming with java

The AWT Class hierarchy

Java AWT (Abstract Window Toolkit) is an API to develop GUI or window-based

applications in java.

Java AWT components are platform-dependent i.e. components are displayed according to the

view of operating system. AWT is heavyweight i.e. its components are using the resources of OS.

The java.awt package provides classes for AWT api such as TextField, Label, TextArea,

RadioButton, CheckBox, Choice, List etc.

Java AWT Hierarchy

The hierarchy of Java AWT classes are given below.

JAVA PROGRAMMING

Container

The Container is a component in AWT that can contain another components like buttons,

textfields, labels etc. The classes that extends Container class are known as container such as

Frame, Dialog and Panel.

Window

The window is the container that have no borders and menu bars. You must use frame, dialog or

another window for creating a window.

Panel

The Panel is the container that doesn't contain title bar and menu bars. It can have other

components like button, textfield etc.

Frame

The Frame is the container that contain title bar and can have menu bars. It can have other

components like button, textfield etc.

Useful Methods of Component class

Method Description

public void add(Component c)

inserts a component on this component.

public void setSize(int width,int height)

sets the size (width and height) of the component.

public void setLayout(LayoutManager

m)

defines the layout manager for the component.

public void setVisible(boolean status)

changes the visibility of the component, by default

false.

Java AWT Example

To create simple awt example, you need a frame. There are two ways to create a frame in AWT.

o By extending Frame class (inheritance)

o By creating the object of Frame class (association)

JAVA PROGRAMMING

AWT Example by Inheritance

Let's see a simple example of AWT where we are inheriting Frame class. Here, we are showing

Button component on the Frame.

import java.awt.*;

class First extends Frame{

First(){

Button b=new Button("click me");

b.setBounds(30,100,80,30);// setting button position

add(b);//adding button into frame

setSize(300,300);//frame size 300 width and 300 height

setLayout(null);//no layout manager

setVisible(true);//now frame will be visible, by default not visible

}

public static void main(String args[]){

First f=new First();

}}

The setBounds(int xaxis, int yaxis, int width, int height) method is used in the above example that

sets the position of the awt button.

Java Swing

Java Swing tutorial is a part of Java Foundation Classes (JFC) that is used to create window-

based applications. It is built on the top of AWT (Abstract Windowing Toolkit) API and entirely

written in java.

Unlike AWT, Java Swing provides platform-independent and lightweight components.

The javax.swing package provides classes for java swing API such as JButton, JTextField,

JTextArea, JRadioButton, JCheckbox, JMenu, JColorChooser etc.

JAVA PROGRAMMING

Difference between AWT and Swing.

No.

Java AWT

Java Swing

1)

AWT components

dependent.

are platform-

Java swing components are platform-

independent.

2)

AWT components are heavyweight.

Swing components are lightweight.

3)

AWT doesn't support pluggable look

and feel.

Swing supports pluggable look and

feel.

4)

AWT provides less

Swing.

components than

Swing provides more powerful

componentssuch as tables, lists,

scrollpanes, colorchooser, tabbedpane

etc.

5)

AWT doesn't follows MVC(Model View

Controller) where model represents data,

view represents presentation and

controller acts as an interface between

model and view.

Swing follows MVC.

Commonly used Methods of Component class

Method Description

public void add(Component c)

add a component on another component.

public void setSize(int width,int height)

sets size of the component.

public void setLayout(LayoutManager

m)

sets the layout manager for the component.

public void setVisible(boolean b)

sets the visibility of the component. It is by default

false.

JAVA PROGRAMMING

Hierarchy of Java Swing classes

The hierarchy of java swing API is given below.

Java Swing Examples

There are two ways to create a frame:

o By creating the object of Frame class (association)

o By extending Frame class (inheritance)

We can write the code of swing inside the main(), constructor or any other method.

Simple Java Swing Example

Let's see a simple swing example where we are creating one button and adding it on the JFrame

object inside the main() method.

File: FirstSwingExample.java

JAVA PROGRAMMING

import javax.swing.*;

public class FirstSwingExample {

public static void main(String[] args) {

JFrame f=new JFrame();//creating instance of JFrame

JButton b=new JButton("click");//creating instance of JButton

b.setBounds(130,100,100, 40);//x axis, y axis, width, height

f.add(b);//adding button in JFrame

f.setSize(400,500);//400 width and 500 height

f.setLayout(null);//using no layout managers

f.setVisible(true);//making the frame visible

} }

Containers

Java JFrame

The javax.swing.JFrame class is a type of container which inherits the java.awt.Frame class.

JFrame works like the main window where components like labels, buttons, textfields are added

to create a GUI.

Unlike Frame, JFrame has the option to hide or close the window with the help of

setDefaultCloseOperation(int) method.

JFrame Example

import java.awt.FlowLayout;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.Jpanel;

public class JFrameExample {

public static void main(String s[]) {

JFrame frame = new JFrame("JFrame Example");

JPanel panel = new JPanel();

panel.setLayout(new FlowLayout());

JLabel label = new JLabel("JFrame By Example");

JButton button = new JButton();

button.setText("Button");

panel.add(label);

JAVA PROGRAMMING

panel.add(button);

frame.add(panel);

frame.setSize(200, 300);

frame.setLocationRelativeTo(null);

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.setVisible(true);

} }

JApplet

As we prefer Swing to AWT. Now we can use JApplet that can have all the controls of swing.

The JApplet class extends the Applet class.

Example of EventHandling in JApplet:

import java.applet.*;

import javax.swing.*;

import java.awt.event.*;

public class EventJApplet extends JApplet implements ActionListener{

JButton b;

JTextField tf;

public void init(){

tf=new JTextField();

tf.setBounds(30,40,150,20);

b=new JButton("Click");

b.setBounds(80,150,70,40);

add(b);add(tf);

b.addActionListener(this);

setLayout(null);

}

public void actionPerformed(ActionEvent e){

tf.setText("Welcome");

} }

In the above example, we have created all the controls in init() method because it is invoked

only once.

myapplet.html

1. <html>

2. <body>

3. <applet code="EventJApplet.class" width="300" height="300">

JAVA PROGRAMMING

</applet>

</body>

</html>

JDialog

The JDialog control represents a top level window with a border and a title used to take some

form of input from the user. It inherits the Dialog class.

Unlike JFrame, it doesn't have maximize and minimize buttons.

JDialog class declaration

Let's see the declaration for javax.swing.JDialog class.

1. public class JDialog extends Dialog implements WindowConstants, Accessible, RootPaneConta

iner

Commonly used Constructors:

Constructor Description

JDialog()

It is used to create a modeless dialog without a title and

without a specified Frame owner.

JDialog(Frame owner)

It is used to create a modeless dialog with specified

Frame as its owner and an empty title.

JDialog(Frame owner, String title,

boolean modal)

It is used to create a dialog with the specified title,

owner Frame and modality.

JAVA PROGRAMMING

Java JDialog Example

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class DialogExample {

private static JDialog d;

DialogExample() {

JFrame f= new JFrame();

d = new JDialog(f , "Dialog Example", true);

d.setLayout(new FlowLayout());

JButton b = new JButton ("OK");

b.addActionListener (new ActionListener()

{

public void actionPerformed(ActionEvent e)

{

DialogExample.d.setVisible(false);

}

}); Output:

d.add(new JLabel ("Click button to continue."));

d.add(b);

d.setSize(300,300);

d.setVisible(true);

}

public static void main(String args[])

{

new DialogExample();

} }

JPanel

The JPanel is a simplest container class. It provides space in which an application can attach any

other component. It inherits the JComponents class.

It doesn't have title bar.

JAVA PROGRAMMING

JPanel class declaration

1. public class JPanel extends JComponent implements Accessible

Java JPanel Example

import java.awt.*;

import javax.swing.*;

public class PanelExample {

PanelExample()

{

JFrame f= new JFrame("Panel Example");

JPanel panel=new JPanel();

panel.setBounds(40,80,200,200);

panel.setBackground(Color.gray);

JButton b1=new JButton("Button 1");

b1.setBounds(50,100,80,30);

b1.setBackground(Color.yellow);

JButton b2=new JButton("Button 2");

b2.setBounds(100,100,80,30);

b2.setBackground(Color.green);

panel.add(b1); panel.add(b2);

f.add(panel);

f.setSize(400,400);

f.setLayout(null);

f.setVisible(true);

}

public static void main(String args[])

{

new PanelExample();

} }

Overview of some Swing Components

Java JButton

The JButton class is used to create a labeled button that has platform independent implementation. The

application result in some action when the button is pushed. It inherits AbstractButton class.

JAVA PROGRAMMING

JButton class declaration

Let's see the declaration for javax.swing.JButton class.

1. public class JButton extends AbstractButton implements Accessible

Java JButton Example

import javax.swing.*;

public class ButtonExample {

public static void main(String[] args) {

JFrame f=new JFrame("Button Example");

JButton b=new JButton("Click Here");

b.setBounds(50,100,95,30);

f.add(b);

f.setSize(400,400);

f.setLayout(null);

f.setVisible(true); } }

Java JLabel

The object of JLabel class is a component for placing text in a container. It is used to display a

single line of read only text. The text can be changed by an application but a user cannot edit it

directly. It inherits JComponent class.

JLabel class declaration

Let's see the declaration for javax.swing.JLabel class.

1. public class JLabel extends JComponent implements SwingConstants, Accessible

Commonly used Constructors:

Constructor Description

JLabel()

Creates a JLabel instance with no image and with an

empty string for the title.

JLabel(String s)

Creates a JLabel instance with the specified text.

JLabel(Icon i)

Creates a JLabel instance with the specified image.

JLabel(String s, Icon i, int

horizontalAlignment)

Creates a JLabel instance with the specified text,

image, and horizontal alignment.

JAVA PROGRAMMING

Commonly used Methods:

Methods Description

String getText()

t returns the text string that a label displays.

void setText(String text)

It defines the single line of text this component will

display.

void setHorizontalAlignment(int

alignment)

It sets the alignment of the label's contents along

the X axis.

Icon getIcon()

It returns the graphic image that the label displays.

int getHorizontalAlignment()

It returns the alignment of the label's contents along

the X axis.

Java JLabel Example

import javax.swing.*;

class LabelExample

{

public static void main(String args[])

{

JFrame f= new JFrame("Label Example");

JLabel l1,l2;

l1=new JLabel("First Label.");

l1.setBounds(50,50, 100,30);

l2=new JLabel("Second Label.");

l2.setBounds(50,100, 100,30);

f.add(l1); f.add(l2);

f.setSize(300,300);

f.setLayout(null);

f.setVisible(true);

}

}

JAVA PROGRAMMING

JTextField

The object of a JTextField class is a text component that allows the editing of a single line text. It

inherits JTextComponent class.

JTextField class declaration

Let's see the declaration for javax.swing.JTextField class.

1. public class JTextField extends JTextComponent implements SwingConstants

Java JTextField Example

import javax.swing.*;

class TextFieldExample

{

public static void main(String args[])

{

JFrame f= new JFrame("TextField Example");

JTextField t1,t2;

t1=new JTextField("Welcome to Javatpoint.");

t1.setBounds(50,100, 200,30);

t2=new JTextField("AWT Tutorial");

t2.setBounds(50,150, 200,30);

f.add(t1); f.add(t2);

f.setSize(400,400);

f.setLayout(null);

f.setVisible(true);

} }

Java JTextArea

The object of a JTextArea class is a multi line region that displays text. It allows the editing of

multiple line text. It inherits JTextComponent class

JTextArea class declaration

Let's see the declaration for javax.swing.JTextArea class.

1. public class JTextArea extends JTextComponent

Java JTextArea Example

JAVA PROGRAMMING

import javax.swing.*;

public class TextAreaExample

{

TextAreaExample(){

JFrame f= new JFrame();

JTextArea area=new JTextArea("Welcome to javatpoint");

area.setBounds(10,30, 200,200);

f.add(area);

f.setSize(300,300);

f.setLayout(null);

f.setVisible(true);

}

public static void main(String args[])

{

new TextAreaExample();

}}

Simple Java Applications

import javax.swing.JFrame;

import javax.swing.SwingUtilities;

public class Example extends JFrame {

public Example() {

setTitle("Simple example");

setSize(300, 200);

setLocationRelativeTo(null);

setDefaultCloseOperation(EXIT_ON_CLOSE);

}

public static void main(String[] args) {

Example ex = new Example();

ex.setVisible(true);

}}

JAVA PROGRAMMING

Layout Management

Java LayoutManagers

The LayoutManagers are used to arrange components in a particular manner. LayoutManager is

an interface that is implemented by all the classes of layout managers.

BorderLayout

The BorderLayout provides five constants for each region:

1. public static final int NORTH

2. public static final int SOUTH

3. public static final int EAST

4. public static final int WEST

5. public static final int CENTER

Constructors of BorderLayout class:

o BorderLayout(): creates a border layout but with no gaps between the components.

o JBorderLayout(int hgap, int vgap): creates a border layout with the given horizontal and
vertical gaps between the components.

Example of BorderLayout class:
import java.awt.*; Output:
import javax.swing.*;

public class Border

{

JFrame f;

Border()

{

f=new JFrame();

JButton b1=new JButton("NORTH");;

JButton b2=new JButton("SOUTH");;

JButton b3=new JButton("EAST");;

JButton b4=new JButton("WEST");;

JButton b5=new JButton("CENTER");;

f.add(b1,BorderLayout.NORTH);

f.add(b2,BorderLayout.SOUTH);

f.add(b3,BorderLayout.EAST);

f.add(b4,BorderLayout.WEST);

f.add(b5,BorderLayout.CENTER);

f.setSize(300,300);

f.setVisible(true);

}

public static void main(String[] args)

{

new Border();

} }

JAVA PROGRAMMING

Java GridLayout

The GridLayout is used to arrange the components in rectangular grid. One component is

displayed in each rectangle.

Constructors of GridLayout class

1. GridLayout(): creates a grid layout with one column per component in a row.

2. GridLayout(int rows, int columns): creates a grid layout with the given rows and

columns but no gaps between the components.

3. GridLayout(int rows, int columns, int hgap, int vgap): creates a grid layout with the

given rows and columns alongwith given horizontal and vertical gaps.

Example of GridLayout class
1. import java.awt.*;
2. import javax.swing.*;

public class MyGridLayout{

JFrame f;

MyGridLayout(){

f=new JFrame();

JButton b1=new JButton("1");

JButton b2=new JButton("2");

JButton b3=new JButton("3");

JButton b4=new JButton("4");

JButton b5=new JButton("5");

JButton b6=new JButton("6");

JButton b7=new JButton("7");

JButton b8=new JButton("8");

JButton b9=new JButton("9");

f.add(b1);f.add(b2);f.add(b3);f.add(b4);f.add(b5);

f.add(b6);f.add(b7);f.add(b8);f.add(b9);

f.setLayout(new GridLayout(3,3));

//setting grid layout of 3 rows and 3 columns

f.setSize(300,300);

f.setVisible(true);

}

public static void main(String[] args) {

new MyGridLayout(); }}

Java FlowLayout

The FlowLayout is used to arrange the components in a line, one after another (in a flow). It is the

default layout of applet or panel.

Fields of FlowLayout class

1. public static final int LEFT

2. public static final int RIGHT

3. public static final int CENTER

4. public static final int LEADING

5. public static final int TRAILING

JAVA PROGRAMMING

Constructors of FlowLayout class

1. FlowLayout(): creates a flow layout with centered alignment and a default 5 unit

horizontal and vertical gap.

2. FlowLayout(int align): creates a flow layout with the given alignment and a default 5

unit horizontal and vertical gap.

3. FlowLayout(int align, int hgap, int vgap): creates a flow layout with the given

alignment and the given horizontal and vertical gap.

Example of FlowLayout class
import java.awt.*;
import javax.swing.*;

public class MyFlowLayout{

JFrame f;

MyFlowLayout(){

f=new JFrame();

JButton b1=new JButton("1");

JButton b2=new JButton("2");

JButton b3=new JButton("3");

JButton b4=new JButton("4");

JButton b5=new JButton("5");

f.add(b1);f.add(b2);f.add(b3);f.add(b4);f.add(b5);

f.setLayout(new FlowLayout(FlowLayout.RIGHT));

//setting flow layout of right alignment

f.setSize(300,300);

f.setVisible(true);

}

public static void main(String[] args) {

new MyFlowLayout();

} }

